Package 'openintro'

September 1, 2012
Type Package
Title OpenIntro data sets and supplemental functions
Version 1.4
Date 2012-08-31
Author David M Diez, Christopher D Barr, and Mine Cetinkaya-Rundel
Maintainer David M Diez david@openintro.org
Description This package is a supplement to OpenIntro Statistics,which is a free textbook avail-able at openintro.org (at cost paperbacks are also available for under \$10 on Amazon). Thepackage contains data sets used in the textbook along withcustom plotting functions for reproducing book figures. Notethat many functions and examples include color transparency.Some plotting elements may not show up properly (or at all) in some Windows versions.
License GPL-2। GPL-3
LazyLoad yes
LazyData yes
URL http://www.openintro.org/
Depends graphics, grDevices, stats, utils, R (>=2.10)
Repository CRAN
Date/Publication 2012-09-01 12:59:27
R topics documented:
openintro-package 3
abbr2state 5
ageAtMar 6
ballBearing 7
bdims 8
births 9
boxPlot 10
buildAxis 12
cars 15
ccHousing 16
census 17
classData 18
COL 18
contTable 19
county 20
countyComplete 21
credits 23
densityPlot 24
dotPlot 25
edaPlot 27
email 28
email50 31
fadeColor 32
friday 34
gifted 35
govRace10 36
gradesTV 37
heartTr 38
helium 39
histPlot 40
house 41
houseRace10 43
hsb2 44
infMortRate 45
ipod 46
lmPlot 47
loop 48
makeTube 49
mammals 51
marathon 52
marioKart 53
MLB 55
mlbBat10 56
myPDF 58
ncbirths 59
normTail 60
oscars 62
poker 63
possum 63
president 64
prRace08 65
run10 66
satGPA 68
openintro-package 3
senateRace10 69
smoking 70
textbooks 71
tgSpending 72
tips 73
treeDiag 74
unempl 76
Index 78
openintro-package OpenIntro data sets and supplemental functions

Description

This package is a supplement to OpenIntro Statistics, which is a free textbook available at openintro.org (at-cost paperbacks are also available for under \$10 on Amazon). The package contains data sets used in the textbook along with custom plotting functions for reproducing book figures. Note that many functions and examples include color transparency. Some plotting elements may not show up properly (or at all) in some Windows versions.

Details

Package:	openintro
Type:	Package
Version:	1.4
Date:	$2012-08-31$
License:	GPL-2 I GPL-3
LazyLoad:	yes

boxPlot, buildAxis, densityPlot, dotPlot, edaPlot, histPlot, normTail, cars, marioKart, possum, run10, satGPA, textbooks

Some colors include transparency, which means they will not be plotted in some operating systems (e.g. Windows). However, the plots may be viewed if they are written to a PDF or PNG file first. For a discussion of this topic, please see
http://yihui.name/en/2007/09/semi-transparent-colors-in-r-color-image-as-an-example/
Two new functions, myPDF and myPNG, were created in this package and may also be used to set up nice plotting files that allow for transparency.

Author(s)

David M Diez, Christopher D Barr, Mine Cetinkaya-Rundel
Maintainer: DM Diez david.m.diez@gmail.com

Examples

```
#===> boxPlot <===#
data(run10)
par(mfrow=1:2)
boxPlot(run10$time)
boxplot(run10$time)
#===> histPlot, example 1 <===#
data(run10)
par(mfrow=c(2,2))
histPlot(run10$time)
histPlot(run10$time[run10$gender=='M'], probability=TRUE, xlim=c(30, 180),
ylim=c(0, 0.025), hollow=TRUE)
histPlot(run10$time[run10$gender=='F'], probability=TRUE, add=TRUE,
hollow=TRUE, lty=3, border='red')
legend('topleft', col=c('black', 'red'), lty=2:3, legend=c('M','F'))
histPlot(run10$time, col=fadeColor('yellow', '33'), border='darkblue',
probability=TRUE, breaks=30, lwd=3)
brks <- c(40, 50, 60, 65, 70, 75, 80, seq(82.5, 120, 2.5), 125,
130, 135, 140, 150, 160, 180)
histPlot(run10$time, probability=TRUE, breaks=brks,
col=fadeColor('darkgoldenrod4', '33'))
#===> histPlot, example 2 <===#
data(cars)
par(mfrow=c(1,1))
histPlot(cars$price[cars$type=='small'], probability=TRUE, hollow=TRUE,
xlim=c(0,50))
histPlot(cars$price[cars$type=='midsize'], probability=TRUE, hollow=TRUE,
add=TRUE, border='red', lty=3)
histPlot(cars$price[cars$type=='large'], probability=TRUE, hollow=TRUE,
add=TRUE, border='blue', lty=4)
legend('topright', lty=2:4, col=c('black', 'red', 'blue'),
legend=c('small', 'midsize', 'large'))
#===> densityPlot <===#
data(tips)
par(mfrow=c(1,1))
densityPlot(tips$tip, tips$day)
legend('topright', col=c('black','red'), lty=1:2,
legend=c('Tuesday', 'Friday'))
#===> identifying reasons for outliers <===#
data(marioKart)
par(mfrow=c(1,1))
boxPlot(marioKart$totalPr, marioKart$cond, horiz=TRUE)
these <- which(marioKart$totalPr > 80)
# see the data collection criteria for
# why these observations do not belong.
lines(rep(marioKart$totalPr[these[1]], 2), c(2.4, 2))
text(marioKart$totalPr[these[1]], 2.4, marioKart$title[these[1]],
```

```
pos=3, cex=0.5)
lines(rep(marioKart$totalPr[these[2]], 2), c(1.6, 2))
text(marioKart$totalPr[these[2]], 1.6, marioKart$title[these[2]],
pos=1, cex=0.5)
#===> compare plotting methods <===#
data(cars)
par(mfrow=c(1,1))
histPlot(cars$price, ylim=c(0, 0.1), axes=FALSE, ylab=',',
probability=TRUE, xlab='price')
axis(1)
boxPlot(cars$price, width=0.03, horiz=TRUE, add=0.067, axes=FALSE)
dotPlot(cars$price, at=0.095, add=TRUE)
densityPlot(cars$price, add=TRUE)
#===> controlling the number of axis labels <===#
# specify the number of labels
data(textbooks)
x <- textbooks$diff
par(mfrow=c(3,1))
histPlot(x, axes=FALSE)
buildAxis(1, x, n=4, nMin=4, nMax=4)
histPlot(x, axes=FALSE)
buildAxis(1, x, n=5, nMin=5, nMax=5)
histPlot(x, axes=FALSE)
# no decent axis is found for this data with exactly six labels
# no min or max specified, only a target number of labels:
buildAxis(1, x, n=6)
#===> creating normal plots with tails <===#
par(mfrow=c(2,3), mar=c(3,3,1,1), mgp=c(1.7, 0.7, 0))
normTail(L=-2)
normTail(U=1, xLab='symbol', cex.axis=0.7)
normTail(M=c(-2,-0.3), col='#22558833')
normTail(5, 13, L=-5, M=c(0,3), U=12, xAxisIncr=2)
normTail(102, 4, xlim=c(97,110), M=c (100,103))
normTail(-10.0, 5.192, M=c(-5,2), digits=1, xAxisIncr=2)
#===> Exploratory Data Analysis Plot <===#
data(mlbBat10)
#edaPlot(mlbBat10)
```

abbr2state
Convert state names to abbreviations and back again

Description

Two utility functions. One converts state names to the state abbreviations, and the second does the opposite.

Usage

abbr2state(abbr)
state2abbr (state)

Arguments

state A vector of state name, where there is a little fuzzy matching.
abbr A vector of state abbreviation.

Value

Returns a vector of the same length with the corresponding state names or abbreviations.

Author(s)

David Diez

See Also

county, countyComplete

Examples

```
state2abbr("Minnesota")
abbr2state("MN")
#_
    #_____ Some Spelling/Capitalization Errors Okay _____#
state2abbr("mINnesta")
```

 ageAtMar Age at first marriage of 5,534 US women.

Description

Age at first marriage of 5,534 US women who responded to the National Survey of Family Growth (NSFG) conducted by the CDC in the 2006 and 2010 cycle.

Usage

data(ageAtMar)

Format

A data frame with 5,534 observations and 1 variable.
age Age a first marriage.

Source

National Survey of Family Growth, 2006-2010 cycle, http://www.cdc.gov/nchs/nsfg/nsfg_ 2006_2010_puf.htm.

Examples

data(ageAtMar)
histPlot(ageAtMar\$age)

```
ballBearing Lifespan of ball bearings
```


Description

A simulated data set on lifespan of ball bearings.

Usage

data(ballBearing)

Format

A data frame with 75 observations on the following variable.
lifeSpan Lifespan of ball bearings (in hours).

Source

Simulated data.

Examples

```
data(ballBearing)
par(mfrow=c(1,2))
histPlot(ballBearing$lifeSpan, col='#22558833')
qqnorm(ballBearing$lifeSpan)
```


Description

Body girth measurements and skeletal diameter measurements, as well as age, weight, height and gender, are given for 507 physically active individuals -247 men and 260 women. These data can be used to provide statistics students practice in the art of data analysis. Such analyses range from simple descriptive displays to more complicated multivariate analyses such as multiple regression and discriminant analysis.

Usage

data(bdims)

Format

A data frame with 507 observations on the following 25 variables.
bia.di A numerical vector, respondent's biacromial diameter in centimeters.
bii.di A numerical vector, respondent's biiliac diameter (pelvic breadth) in centimeters.
bit.di A numerical vector, respondent's bitrochanteric diameter in centimeters.
che.de A numerical vector, respondent's chest depth in centimeters, measured between spine and sternum at nipple level, mid-expiration.
che.di A numerical vector, respondent's chest diameter in centimeters, measured at nipple level, mid-expiration.
elb.di A numerical vector, respondent's elbow diameter in centimeters, measured as sum of two elbows.
wri.di A numerical vector, respondent's wrist diameter in centimeters, measured as sum of two wrists.
kne.di A numerical vector, respondent's knee diameter in centimeters, measured as sum of two knees.
ank. di A numerical vector, respondent's ankle diameter in centimeters, measured as sum of two ankles.
sho.gi A numerical vector, respondent's shoulder girth in centimeters, measured over deltoid muscles.
che.gi A numerical vector, respondent's chest girth in centimeters, measured at nipple line in males and just above breast tissue in females, mid-expiration.
wai.gi A numerical vector, respondent's waist girth in centimeters, measured at the narrowest part of torso below the rib cage as average of contracted and relaxed position.
nav.gi A numerical vector, respondent's navel (abdominal) girth in centimeters, measured at umbilicus and iliac crest using iliac crest as a landmark.
hip.gi A numerical vector, respondent's hip girth in centimeters, measured at at level of bitrochanteric diameter.
thi.gi A numerical vector, respondent's thigh girth in centimeters, measured below gluteal fold as the average of right and left girths.
bic.gi A numerical vector, respondent's bicep girth in centimeters, measured when flexed as the average of right and left girths.
for.gi A numerical vector, respondent's forearm girth in centimeters, measured when extended, palm up as the average of right and left girths.
kne.gi A numerical vector, respondent's knee diameter in centimeters, measured as sum of two knees.
cal.gi A numerical vector, respondent's calf maximum girth in centimeters, measured as average of right and left girths.
ank.gi A numerical vector, respondent's ankle minimum girth in centimeters, measured as average of right and left girths.
wri.gi A numerical vector, respondent's wrist minimum girth in centimeters, measured as average of right and left girths.
age A numerical vector, respondent's age in years.
wgt A numerical vector, respondent's weight in kilograms.
hgt A numerical vector, respondent's height in centimeters.
sex A categorical vector, 1 if the respondent is male, 0 if female.

Source

Heinz G, Peterson LJ, Johnson RW, Kerk CJ. 2003. Exploring Relationships in Body Dimensions. Journal of Statistics Education 11(2).

Examples

```
data(bdims)
histPlot(bdims$hgt)
boxPlot(bdims$hgt)
plot(bdims$wgt ~ bdims$hgt)
plot(bdims$hgt ~ bdims$sho.gi)
plot(bdims$wgt ~ bdims$hip.gi)
```


births
 North Carolina births

Description

Data on a random sample of 100 births for babies in North Carolina where the mother was not a smoker and another 50 where the mother was a smoker.

Usage

data(births)

Format

A data frame with 150 observations on the following 14 variables.
fAge Father's age.
mAge Mother's age.
weeks Weeks at which the mother gave birth.
premature Indicates whether the baby was premature or not.
visits Number of hospital visits.
gained Weight gained by mother.
weight Birth weight of the baby.
sexBaby Gender of the baby.
smoke Whether or not the mother was a smoker.

Source

These birth records were

References

Birth records released by North Carolina in 2004.

Examples

data(births)
boxPlot(births\$weight, births\$smoke)

| boxPlot Boxplot |
| :--- | :--- |

Description

An alternative to boxplot. Equations are not accepted. Instead, the second argument, fact, is used to split the data.

Usage

```
boxPlot(x, fact=NULL, horiz=FALSE, width=2/3, lwd=1,
                lcol='black', medianLwd=2, pch=20, pchCex=1.8,
                col=rgb(0,0,0,0.25), add=FALSE, key=NULL,
                axes=TRUE, xlab='', ylab='', xlim=NULL, ylim=NULL,
                na.rm=TRUE, ...)
```


Arguments

x	A numerical vector.
fact	A character or factor vector defining the grouping for side-by-side box plots.
horiz	If TRUE, the box plot is oriented horizontally.
width	The width of the boxes in the plot. Value between 0 and 1.
lwd	Width of lines used in box and whiskers.
lcol	Color of the box, median, and whiskers.
medianLwd	Width of the line marking the median.
pch	Plotting character of outliers.
pchCex	Size of outlier character.
col	Color of outliers.
add	If FALSE, a new plot is created. Otherwise, the boxplots are added to the current plot for values of TRUE or a numerical vector specifying the locations of the boxes.
key	The order in which to display the side-by-side boxplots. If locations are specified in add, then the elements of add will correspond to the elements of key.
axes	Whether to plot the axes.
xlab	Label for the x axis.
ylab	Label for the y axis.
$x \mathrm{lim}$	Limits for the x axis.
ylim	Limits for the y axis.
na.rm	Indicate whether NA values should be removed.
. .	Additional arguments to plot.

Author(s)

David Diez

See Also

histPlot, dotPlot, densityPlot

Examples

```
data(run10)
par(mfrow=1:2)
#===> comparison 1 <===#
boxPlot(run10$time)
boxplot(run10$time)
#===> comparison 2 <===#
boxPlot(run10$time, run10$gender, col=fadeColor('black', '22'))
boxplot(run10$time ~ run10$gender)
```

```
#===> modifications using boxPlot <===#
par(mfrow=c(2,2))
boxPlot(run10$time, run10$gender)
boxPlot(run10$time, run10$gender, xlab='gender',
ylab='run time (min)',
col=fadeColor('black', '18'))
plot(0,0, xlab='gender', ylab='run time (min)',
xlim=c(0,6), ylim=c(30, 180), axes=FALSE)
boxPlot(run10$time, run10$gender, width=0.5, lwd=2,
lcol=4, medianLwd=4, pch=1, pchCex=1, col=4,
add=c(1, 2, 5), key=c('M','F','N'))
plot(0,0, ylab='gender', xlab='run time (min)',
xlim=c(30, 180), ylim=c(0, 3), axes=FALSE)
boxPlot(run10$time, run10$gender, horiz=TRUE,
xlab='run time (min)', ylab='gender',
add=1:2, key=c('F','M'))
# 'key' can be used to restrict to only the
# desired groups
#===> combine boxPlot and dotPlot <===#
data(tips)
par(mfrow=c(1,1))
boxPlot(tips$tip, tips$day, horiz=TRUE, key=c('Tuesday', 'Friday'))
dotPlot(tips$tip, tips$day, add=TRUE, at=1:2+0.05,
key=c('Tuesday', 'Friday'))
#===> adding a box <===#
par(mfrow=1:2)
boxPlot(run10$time[run10$gender=='M'], xlim=c(0,3))
boxPlot(run10$time[run10$gender=='F'], add=2, axes=FALSE)
axis(1, at=1:2, labels=c('M', 'F'))
boxPlot(run10$time[run10$gender=='M'], ylim=c(0,3), horiz=TRUE)
boxPlot(run10$time[run10$gender=='F'], add=2, horiz=TRUE, axes=FALSE)
axis(2, at=1:2, labels=c('M', 'F'))
```

buildAxis
Axis function substitute

Description

The function buildAxis is built to provide more control of the number of labels on the axis. This function is still under development.

Usage

buildAxis(side, limits, $n, n M i n=2, n M a x=10, ~ e x t e n d=2$, eps $=10^{\wedge}-12, \ldots$)

Arguments

side
limits
n
nMin
nMax
extend
eps
...

The side of the plot where to add the axis.
Either lower and upper limits on the axis or a data set.
The preferred number of axis labels.
The minimum number of axis labels.
The maximum number of axis labels.
How far the axis may extend beyond range(limits).
The smallest increment allowed.
Arguments passed to axis

Details

The primary reason behind building this function was to allow a plot to be created with similar features but with different data sets. For instance, if a set of code was written for one data set and the function axis had been utilized with pre-specified values, the axis may not match the plot of a new set of data. The function buildAxis addresses this problem by allowing the number of axis labels to be specified and controlled.
The axis is built by assigning penalties to a variety of potential axis setups, ranking them based on these penalties and then selecting the axis with the best score.

Value

A vector of the axis plotted.

Author(s)

David M Diez

See Also

histPlot, dotPlot, boxPlot, densityPlot

Examples

```
#===> 0 <===#
limits <- rnorm(100, 605490, 10)
hist(limits, axes=FALSE)
buildAxis(1, limits, 2, nMax=4)
#===> 1 <===#
x <- seq(0, 500, 10)
y <- 8*x+rnorm(length(x), mean=6000, sd=200)
plot(x, y, axes=FALSE)
buildAxis(1, limits=x, n=5)
buildAxis(2, limits=y, n=3)
#===> 2 <===#
x <- 9528412 + seq(0, 200, 10)
```

```
y <- 8*x+rnorm(length(x), mean=6000, sd=200)
plot(x, y, axes=FALSE)
temp <- buildAxis(1, limits=x, n=4)
buildAxis(2, y, 3)
#===> 3 <===#
x <- seq(367, 1251, 10)
y <- 7.5*x+rnorm(length(x), mean=6000, sd=800)
plot(x, y, axes=FALSE)
buildAxis(1, limits=x, n=4, nMin=3, nMax=3)
buildAxis(2, limits=y, n=4, nMin=3, nMax=5)
#===> 4 <===#
x <- seq(367, 367.1, 0.001)
y <- 7.5*x+rnorm(length(x), mean=6000, sd=0.01)
plot(x, y, axes=FALSE)
buildAxis(1, limits=x, n=4, nMin=5, nMax=6)
buildAxis(2, limits=y, n=2, nMin=3, nMax=4)
#===> 5 <===#
x<- seq(-0.05, -0.003, 0.0001)
y <- 50 + 20*x + rnorm(length(x), sd=0.1)
plot(x, y, axes=FALSE)
buildAxis(1, limits=x, n=4, nMin=5, nMax=6)
buildAxis(2, limits=y, n=4, nMax=5)
abline(lm(y ~ x))
#===> 6 <===#
x <- seq(-0.0097, -0.008, 0.0001)
y <- 50 + 20*x + rnorm(length(x), sd=0.1)
plot(x, y, axes=FALSE)
buildAxis(1, limits=x, n=4, nMin=2, nMax=5)
buildAxis(2, limits=y, n=4, nMax=5)
abline(lm(y ~ x))
#===> 7 <===#
x <- seq(0.03, -0.003099, -0.00001)
y <- 50 + 20*x + rnorm(length(x), sd=0.1)
plot(x, y, axes=FALSE)
buildAxis(1, limits=x, n=4, nMin=2, nMax=5)
buildAxis(2, limits=y, n=4, nMax=6)
abline(lm(y ~ x))
#===> 8 - repeat <===#
m <- runif(1)/runif(1) +
rgamma(1, runif(1)/runif(1), runif(1)/runif(1))
s <- rgamma(1, runif(1)/runif(1), runif(1)/runif(1))
x <- rnorm(50, m, s)
hist(x, axes=FALSE)
buildAxis(1, limits=x, n=5, nMin=4, nMax=6, eps=10^-12)
if(diff(range(x)) < 10^-12){
cat("too small\n")
}
```

cars cars

Description

A data frame with 54 rows and 6 columns. The columns represent the variables type, price, mpgCity, driveTrain, passengers, weight for a sample of 54 cars from 1993. This data is a subset of the Cars93 data set from the MASS package.

Usage

data(cars)

Format

A data frame with 54 observations on the following 6 variables.
type The vehicle type with levels large, midsize, and small.
price Vehicle price (USD).
mpgCity Vehicle mileage in city (miles per gallon).
driveTrain Vehicle drive train with levels 4WD, front, and rear.
passengers The vehicle passenger capacity.
weight Vehicle weight (lbs).

Details

These cars represent a random sample for 1993 models that were in both Consumer Reports and PACE Buying Guide. Only vehicles of type 'small', 'midsize', and 'large' were include.

Further description can be found in Lock (1993). Use the URL http: //www.amstat.org/publications/ jse/v1n1/datasets.lock.html.

Source

Lock, R. H. (1993) 1993 New Car Data. Journal of Statistics Education 1(1).

References

http://www.openintro.org/

Examples

```
data(cars)
#===> vehicle price by type <===#
par(mfrow=c(1,1))
histPlot(cars$price[cars$type=='small'], probability=TRUE,
hollow=TRUE, xlim=c(0,50))
histPlot(cars$price[cars$type=='midsize'], probability=TRUE,
hollow=TRUE, add=TRUE, border='red', lty=3)
histPlot(cars$price[cars$type=='large'], probability=TRUE,
hollow=TRUE, add=TRUE, border='blue', lty=4)
legend('topright', lty=2:4, col=c('black', 'red', 'blue'),
legend=c('small', 'midsize', 'large'))
#===> vehicle price versus weight <===#
plot(cars$weight, cars$price, col=fadeColor('magenta', '88'),
pch=20, cex=2)
#===> mileage versus weight <===#
plot(cars$weight, cars$mpgCity, type="n")
temp <- c(seq(1000, 5000, 100), rev(seq(1000, 5000, 100)), 1000)
hold <- 87.11 - 0.03508*temp + 0.000004432*temp^2 + 7*c(rep(-1, 41), rep(1, 41), 1)
polygon(temp, hold, col="#E2E2E2",
border=fadeColor('black', '00'))
points(cars$weight, cars$mpgCity,
col='chocolate4', pch=20, cex=2)
```

 ccHousing Community college housing (simulated data)

Description

These are simulated data and intended to represent housing prices of students at a community college.

Usage

data(ccHousing)

Format

A data frame with 75 observations on the following variable.
price Monthly housing price, simulated.

References

OpenIntro Statistics, openintro.org

Examples

```
data(ccHousing)
hist(ccHousing$price)
```


census

Random sample of 2000 U.S. Census Data

Description

A random sample of 500 observations from the 2000 U.S. Census Data.

Usage

data(census)

Format

A data frame with 500 observations on the following 8 variables.
censusYear Census Year.
stateFIPScode Name of state.
totalFamilyIncome Total family income (in U.S. dollars).
age Age.
sex Sex with levels Female and Male.
raceGeneral Race with levels American Indian or Alaska Native, Black, Chinese, Japanese, Other Asian or Pacific Islander, Two major races, White and Other.
maritalStatus Marital status with levels Divorced, Married/spouse absent, Married/spouse present, Never married/single, Separated and Widowed.
totalPersonalIncome Total personal income (in U.S. dollars).

Source

http://factfinder.census.gov/

Examples

```
data(census)
str(census)
these <- census[,3] > 0 # income greater than 0
histPlot(log(census$totalFamilyIncome[these]), xlab="log(total family income)")
```

classData Simulated class data

Description

This data is simulated and is meant to represent students scores from three different lectures who were all given the same exam.

Usage

data(classData)

Format

A data frame with 164 observations on the following 2 variables.
m 1 Represents a first midterm score.
lecture Three classes: a, b, and c .

References

OpenIntro Statistics, Chapter 8.

Examples

```
data(classData)
anova(lm(m1 ~ lecture, classData))
```

COL
OpenIntro Statistics colors

Description

These are the core colors used for the OpenIntro Statistics textbook. The blue, green, yellow, and red colors are also gray-scaled, meaning no changes are required when printing black and white copies.

Usage

data(COL)

Format

A 7-by-4 matrix of 7 colors with four fading scales: blue, green, yellow, red, black, gray, and light gray.

Source

Colors selected by OpenIntro's in-house graphic designer, Meenal Patel.

References

OpenIntro Statistics, Second Edition, openintro.org.

Examples

```
data(COL)
plot(1:7, 7:1, col=COL, pch=19, cex=6, xlab="", ylab="",
    xlim=c(0.5,7.5), ylim=c(-2.5,8), axes=FALSE)
text(1:7, 7:1+0.7, paste("COL[", 1:7, "]", sep=""), cex=0.9)
points(1:7, 7:1-0.7, col=COL[,2], pch=19, cex=6)
points(1:7, 7:1-1.4, col=COL[,3], pch=19, cex=6)
points(1:7, 7:1-2.1, col=COL[,4], pch=19, cex=6)
```

contTable Generate Contingency Tables for LaTeX

Description

Input a data frame or a table, and the LaTeX output will be returned. Options exist for row and column proportions as well as for showing work.

Usage

$$
\begin{gathered}
\text { contTable(x, prop = c("none", "row", "col"), } \\
\text { show = FALSE, digits = 3) }
\end{gathered}
$$

Arguments

x
prop
show If row or column proportions are specified, indicate whether work should be shown.
digits The number of digits after the decimal that should be shown for row or column proportions.

Details

The contTable function makes substantial use of the cat function.

Author(s)

David Diez

References

OpenIntro Statistics, openintro.org

See Also

email, cars, possum, marioKart

Examples

```
data(email)
table(email[,c("spam", "sent_email")])
contTable(email[,c("spam", "sent_email")])
```

county United States Counties

Description

Data for 3143 counties in the United States. See the countyComplete data set for additional variables.

Usage

data(county)

Format

A data frame with 3143 observations on the following 15 variables.
name County names.
state State names.
pop2000 Population in 2000.
pop2010 Population in 2010.
fed_spend Federal spending per capita
poverty Percent of population in poverty.
homeownership Homeownership rate, 2006-2010.
multiunit Percent of housing units in multi-unit structures, 2006-2010.
income Income per capita income.
med_income Median income.

Source

These data were collected from http://quickfacts.census.gov/qfd/states/ and its accompanying pages.

References

~ OpenIntro Statistics, openintro.org ~~

See Also

email, email50, countyComplete

Examples

data(county)
p00 <- county\$pop2000
p10 <- county\$pop2010
hist((p10 - p00)/p00)
countyComplete United States Counties

Description

Data for 3143 counties in the United States.

Usage

data(countyComplete)

Format

A data frame with 3143 observations on the following 53 variables.
state State.
name County name.
FIPS FIPS code.
pop2010 2010 county population.
pop2000 2000 county population.
age_under_5 Percent of population under 5 (2010).
age_under_18 Percent of population under 18 (2010).
age_over_65 Percent of population over 65 (2010).
female Percent of population that is female (2010).
white Percent of population that is white (2010).
black Percent of population that is black (2010).
native Percent of population that is a Native American (2010).
asian Percent of population that is a Asian (2010).
pac_isl Percent of population that is Hawaii or Pacific Islander (2010).
two_plus_races Percent of population that identifies as two or more races (2010).
hispanic Percent of population that is Hispanic (2010).
white_not_hispanic Percent of population that is white and not Hispanic (2010).
no_move_in_one_plus_year Percent of population that has not moved in at least one year (20062010).
foreign_born Percent of population that is foreign-born (2006-2010).
foreign_spoken_at_home Percent of population that speaks a foreign language at home (20062010).
hs_grad Percent of population that is a high school graduate (2006-2010).
bachelors Percent of population that earned a bachelor's degree (2006-2010).
veterans Percent of population that are veterans (2006-2010).
mean_work_travel Mean travel time to work (2006-2010).
housing_units Number of housing units (2010).
home_ownership Homeownership rate (2006-2010).
housing_multi_unit Housing units in multi-unit structures (2006-2010).
median_val_owner_occupied Median value of owner-occupied housing units (2006-2010).
households Households (2006-2010).
persons_per_household Persons per household (2006-2010).
per_capita_income Per capita money income in past 12 months (2010 dollars, 2006-2010)
median_household_income Median household income (2006-2010).
poverty Percent below poverty level (2006-2010).
private_nonfarm_establishments Private nonfarm establishments (2009).
private_nonfarm_employment Private nonfarm employment (2009).
percent_change_private_nonfarm_employment Private nonfarm employment, percent change from 2000 to 2009.
nonemployment_establishments Nonemployer establishments (2009).
firms Total number of firms (2007).
black_owned_firms Black-owned firms, percent (2007).
native_owned_firms Native American-owned firms, percent (2007).
asian_owned_firms Asian-owned firms, percent (2007).
pac_isl_owned_firms Native Hawaiian and other Pacific Islander-owned firms, percent (2007).
hispanic_owned_firms Hispanic-owned firms, percent (2007).
women_owned_firms Women-owned firms, percent (2007).
manufacturer_shipments_2007 Manufacturer shipments, 2007 (\$1000).
mercent_whole_sales_2007 Merchange wholesaler sales, 2007 (\$1000).
sales Retail sales, 2007 (\$1000).
sales_per_capita Retail sales per capita, 2007.
accommodation_food_service Accommodation and food services sales, 2007 (\$1000).
building_permits Building permits (2010).
fed_spending Federal spending (2009).
area Land area in square miles (2010).
density Persons per square mile (2010).
credits

Source

~~http://quickfacts.census.gov/qfd/states/ ~~

References

~~ OpenIntro Statistics, openintro.org ~~

Examples

```
    data(countyComplete)
```

 credits College credits.

Description

A simulated data set of number of credits taken by college students each semester.

Usage

data(credits)

Format

A data frame with 100 observations on the following variable.
credits Number of credits.

Source

Simulated data.

Examples

```
data(credits)
histPlot(credits$credits)
```

```
densityPlot Density plot
```


Description

Compute kernel density plots, written in the same structure as boxPlot. Histograms can be automatically added for teaching purposes.

Usage

densityPlot(x, fact = NULL, bw = "nrd0",
histo = c("none", "faded", "hollow"),
breaks = "Sturges", fading = "OE", fadingBorder = "25",
lty $=$ NULL, $l w d=1$, col = c("black", "red", "blue"),
key $=$ NULL, add $=$ FALSE, adjust $=1$,
kernel = c("gaussian", "epanechnikov", "rectangular",
"triangular", "biweight", "cosine", "optcosine"),
weights $=$ NULL, $n=512$, from, to, na.rm = FALSE,
xlim = NULL, ylim = NULL, main = "", ...)

Arguments

X
fact
bw
histo Whether to plot a faded histogram ('faded') or hollow histogram ('hollow') in the background. By default, no histogram will be plotted.
breaks The breaks argument for histPlot if histo is 'faded' or 'hollow'.
fading Character value of hexadecimal, e.g. ' 22 ' or ' 5 D ', describing the amount of fading inside the rectangles of the histogram if histo=' faded'.
fadingBorder Character value of hexadecimal, e.g. '22' or '5D', describing the amount of fading of the rectangle borders of the histogram if histo is 'faded' or 'hollow'.
lty Numerical vector describing the line type for the density curve(s). Each element corresponds to a different level of the argumentfact.
lwd Numerical vector describing the line width for the density curve(s). Each element corresponds to a different level of the argumentfact.
col Numerical vector describing the line color for the density curve(s). Each element corresponds to a different level of the argumentfact.
key An argument to specify ordering of the factor levels.
add If TRUE, the density curve is added to the plot.
adjust Argument passed to density to adjust the bandwidth.
kernel Argument passed to density to select the kernel used.
weights Argument passed to density to weight observations.
n
from
to Argument passed to density specifying the largest value to include in the density estimate.
na.rm Argument passed to density specifying handling of NA values.
xlim $\quad x$-axis limits.
ylim $\quad y$-axis limits.
main Title for the plot.
... If add=FALSE, then additional arguments to plot.

Author(s)

David Diez

See Also

histPlot, dotPlot, boxPlot

Examples

```
data(tips)
par(mfrow=c(2,2))
histPlot(tips$tip[tips$day == 'Tuesday'], hollow=TRUE, xlim=c(0, 30),
lty=1, main='Tips by day')
histPlot(tips$tip[tips$day == 'Friday'], hollow=TRUE, border='red',
add=TRUE, main='Tips by day')
legend('topright', col=c('black', 'red'), lty=1:2,
legend=c('Tuesday', 'Friday'))
densityPlot(tips$tip, tips$day, col=c('black', 'red'), main='Tips by day')
legend('topright', col=c('black', 'red'), lty=1:2,
legend=c('Tuesday', 'Friday'))
data(run10)
densityPlot(run10$time, histo='faded', breaks=15, main='Run time')
densityPlot(run10$time, histo='hollow', breaks=30, fadingBorder='66',
lty=1, main='Run time')
```

dotPlot Dot plot

Description

Plot observations as dots.

Usage

dotPlot(x, fact $=$ NULL, vertical $=$ FALSE, at $=1$, key $=$ NULL,
pch = 20, col = fadeColor("black", "66"), cex = 1.5,
add $=$ FALSE, axes $=$ TRUE, xlim = NULL, ylim = NULL, ...)

Arguments

x
fact
vertical
at
key The factor levels corresponding to at, pch, col, and cex.
pch Plotting character. If fact is given, then different plotting characters can be specified for each factor level. If key is specified, the elements of pch will correspond to the elements of key.
col Plotting character color. If fact is given, then different colors can be specified for each factor level. If key is specified, the elements of col will correspond to the elements of key.
cex Plotting character size. If fact is given, then different character sizes can be specified for each factor level. If key is specified, the elements of cex will correspond to the elements of key.
add If TRUE, then the points are added to the plot.
axes If FALSE, no axes are plotted.
$x \lim \quad$ Limits for the x axis.
ylim Limits for the y axis.
Additional arguments to be passed to plot if add=FALSE or points if add=TRUE.

Author(s)

David Diez

See Also

histPlot, densityPlot, boxPlot

Examples

```
#===> example 1 <===#
data(cars)
dotPlot(cars$price, cars$type, key=c('large', 'midsize', 'small'), cex=1:3)
#===> example 2 <===#
data(run10)
layout(matrix(1:2,2), heights=c(2.7,1.5))
par(las=1)
```

```
these <- run10$gender=='M'
dotPlot(run10$time[these], run10$div[these],
col=fadeColor('black', '11'))
# disorganized levels in the above plot, which we could
# organize with key. an example of organizing the levels...
dotPlot(run10$time[these], run10$div[these],
col=fadeColor('black', '11'),
key=c('20-24', '25-29', '30-34', '35-39'))
par(las=0, mfrow=c(1,1))
#===> example 3 <===#
data(marioKart)
dotPlot(marioKart$totalPr, marioKart$cond, ylim=c(0.5,2.5),
xlim=c(25, 80), cex=1) # miss the outliers
boxPlot(marioKart$totalPr, marioKart$cond, add=1:2+0.1,
key=c('new', 'used'), horiz=TRUE, axes=FALSE)
```

edaPlot Exploratory data analysis plot

Description

Explore different plotting methods using a click interface.

Usage

```
edaPlot(dataFrame, Col=c('#888888', '#FF0000', '#222222',
                        '#FFFFFF', '#CCCCCC', '#3377AA'))
```


Arguments

dataFrame A data frame.
Col A vector containing six colors. The colors may be given in any form.

Details

Below is a screen-capture image of the interface for edaPlot using the second data set in the examples below. Red is used to highlight the two active variables and plotting type.

Author(s)

David Diez

See Also

histPlot, densityPlot, boxPlot, dotPlot

Examples

```
data(mlbBat10)
bat <- mlbBat10[mlbBat10$AB > 200,]
#edaPlot(bat)
data(marioKart)
mk <- marioKart[marioKart$totalPr < 100,]
#edaPlot(mk)
```

email

Description

These data represent incoming emails for the first three months of 2012 for an email account (see Source).

Usage

data(email)
data(email_test)

Format

A email (email_sent) data frame has 3921 (1252) observations on the following 21 variables.
spam Indicator for whether the email was spam.
to_multiple Indicator for whether the email was addressed to more than one recipient.
from Whether the message was listed as from anyone (this is usually set by default for regular outgoing email).
cc Indicator for whether anyone was CCed.
sent_email Indicator for whether the sender had been sent an email in the last 30 days.
time Time at which email was sent.
image The number of images attached.
attach The number of attached files.
dollar The number of times a dollar sign or the word "dollar" appeared in the email.
winner Indicates whether "winner" appeared in the email.
inherit The number of times "inherit" (or an extension, such as "inheritance") appeared in the email.
viagra The number of times "viagra" appeared in the email.
password The number of times "password" appeared in the email.
num_char The number of characters in the email, in thousands.
line_breaks The number of line breaks in the email (does not count text wrapping).
format Indicates whether the email was written using HTML (e.g. may have included bolding or active links).
re_subj Whether the subject started with "Re:", "RE:", "re:", or "rE:"
exclaim_subj Whether there was an exclamation point in the subject.
urgent_subj Whether the word "urgent" was in the email subject.
exclaim_mess The number of exclamation points in the email message.
number Factor variable saying whether there was no number, a small number (under 1 million), or a big number.

Source

David Diez's Gmail Account, early months of 2012. All personally identifiable information has been removed.

References

~~ OpenIntro Statistics, openintro.org ~~

See Also

email50, county

Examples

```
data(email)
e <- email
#_
```

\qquad

``` Variables For Logistic Regression
``` \(\qquad\)
``` \#
\# Variables are modified to match
# OpenIntro Statistics, Second Edition
# As Is (7): spam, to_multiple, winner, format,
# re_subj, exclaim_subj
# Omitted (6): from, sent_email, time, image,
# viagra, urgent_subj, number
# Become Indicators (5): cc, attach, dollar,
# inherit, password
e$cc <- ifelse(email$cc > 0, 1, 0)
e$attach <- ifelse(email$attach > 0, 1, 0)
e$dollar <- ifelse(email$dollar > 0, 1, 0)
e$inherit <- ifelse(email$inherit > 0, 1, 0)
e$password <- ifelse(email$password > 0, 1, 0)
# Transform (3): num_char, line_breaks, exclaim_mess
#e$num_char <- cut(email$num_char, c(0,1,5,10,20,1000))
#e$line_breaks <- cut(email$line_breaks, c(0,10,100,500,10000))
#e$exclaim_mess <- cut(email$exclaim_mess, c(-1,0,1,5,10000))
g <- glm(spam ~ to_multiple + winner + format +
    re_subj + exclaim_subj +
    cc + attach + dollar +
    inherit + password, # +
    #num_char + line_breaks + exclaim_mess,
    data=e, family=binomial)
summary (g)
```

\# \qquad Variable Selection Via AIC \qquad _\#

g. <- step(g)

plot(predict(g., type="response"), e\$spam)
\# \qquad Splitting num_char by html \qquad _\#
x <- log(email\$num_char)
bw <- 0.004
R <- range $(x)+c(-1,1)$
wt <- sum(email\$format)/nrow(email)
htmlall <- density (x, bw=0.4, from=R[1], to=R[2])
htmlNo <- density(x[email\$format != 1], bw=0.4, from=R[1], to=R[2])
htmlYes <- density(x[email\$format $==1]$, bw=0.4, from=R[1], to=R[2])
htmlNo\$y <- htmlNo\$y \#* (1-wt)
htmlYes\$y <- htmlYes\$y \#* wt + htmlNo\$y
plot(htmlAll, xlim=c $(-4,6), y \lim =c(0,0.4))$
lines(htmlNo, col=4)
lines(htmlYes, lwd=2, col=2)

```
email50 Sample of 50 emails
```


Description

This is a subsample of the email data set.

Usage

data(email50)

Format

A data frame with 50 observations on the following 21 variables.
spam Indicator for whether the email was spam.
to_multiple Indicator for whether the email was addressed to more than one recipient.
from Whether the message was listed as from anyone (this is usually set by default for regular outgoing email).
cc Indicator for whether anyone was CCed.
sent_email Indicator for whether the sender had been sent an email in the last 30 days.
time Time at which email was sent.
image The number of images attached.
attach The number of attached files.
dollar The number of times a dollar sign or the word "dollar" appeared in the email.
winner Indicates whether "winner" appeared in the email.
inherit The number of times "inherit" (or an extension, such as "inheritance") appeared in the email.
viagra The number of times "viagra" appeared in the email.
password The number of times "password" appeared in the email.
num_char The number of characters in the email, in thousands.
line_breaks The number of line breaks in the email (does not count text wrapping).
format Indicates whether the email was written using HTML (e.g. may have included bolding or active links).
re_subj Whether the subject started with "Re:", "RE:", "re:", or "rE:"
exclaim_subj Whether there was an exclamation point in the subject.
urgent_subj Whether the word "urgent" was in the email subject.
exclaim_mess The number of exclamation points in the email message.
number Factor variable saying whether there was no number, a small number (under 1 million), or a big number.

Source

David Diez's Gmail Account, early months of 2012. All personally identifiable information has been removed.

References

~~ OpenIntro Statistics, openintro.org ~~

See Also

email, county

Examples

```
data(email50)
data(email)
set.seed(5)
d <- email[sample(nrow(email), 50),][c(1:25,27:50,26),]
identical(d, email50)
# the "[c(1,26,2:25,27:50),]" was added to reorder the cases
```

fadeColor Fade colors

Description

Fade colors so they are transparent.

Usage

fadeColor(col, fade = "FF")

Arguments

col An integer, color name, or RGB hexadecimal.
fade The amount to fade col. This value should be a character in hexadecimal from ' 00 ' to ' FF '. The smaller the value, the greater the fading.

Author(s)

David Diez

References

http://research.stowers-institute.org/efg/R/Color/Chart/

See Also

```
dotPlot
```


Examples

```
data(marioKart)
new <- marioKart$cond == 'new'
used <- marioKart$cond == 'used'
par(mfrow=1:2)
#===> color numbers <===#
dotPlot(marioKart$totalPr[new], ylim=c(0,3), xlim=c(25, 80), pch=20,
col=2, cex=2, main='using regular colors')
dotPlot(marioKart$totalPr[used], at=2, add=TRUE, col=4, pch=20, cex=2)
dotPlot(marioKart$totalPr[new], ylim=c(0,3), xlim=c(25, 80),
col=fadeColor(2, '22'), pch=20, cex=2,
main='fading the colors first')
dotPlot(marioKart$totalPr[used], at=2, add=TRUE,
col=fadeColor(4, '22'), pch=20, cex=2)
#===> color names <===#
dotPlot(marioKart$totalPr[new], ylim=c(0,3), xlim=c(25, 80), pch=20,
col='red', cex=2, main='using regular colors')
dotPlot(marioKart$totalPr[used], at=2, add=TRUE, col='blue', pch=20, cex=2)
dotPlot(marioKart$totalPr[new], ylim=c(0,3), xlim=c(25, 80),
col=fadeColor('red', '22'), pch=20, cex=2,
main='fading the colors first')
dotPlot(marioKart$totalPr[used], at=2, add=TRUE,
col=fadeColor('blue', '22'), pch=20, cex=2)
#===> hexadecimal <===#
dotPlot(marioKart$totalPr[new], ylim=c(0,3), xlim=c(25, 80), pch=20,
col='#FF0000', cex=2, main='using regular colors')
dotPlot(marioKart$totalPr[used], at=2, add=TRUE, col='#0000FF', pch=20,
cex=2)
dotPlot(marioKart$totalPr[new], ylim=c(0,3), xlim=c(25, 80),
col=fadeColor('#FF0000', '22'), pch=20, cex=2,
main='fading the colors first')
dotPlot(marioKart$totalPr[used], at=2, add=TRUE,
col=fadeColor('#0000FF', '22'), pch=20, cex=2)
#===> alternative: rgb function <===#
dotPlot(marioKart$totalPr[new], ylim=c(0,3), xlim=c(25, 80), pch=20,
col=rgb(1,0,0), cex=2, main='using regular colors')
dotPlot(marioKart$totalPr[used], at=2, add=TRUE, col=rgb(0,0,1),
pch=20, cex=2)
dotPlot(marioKart$totalPr[new], ylim=c(0,3), xlim=c(25, 80),
col=rgb(1,0,0,1/8), pch=20, cex=2,
main='fading the colors first')
dotPlot(marioKart$totalPr[used], at=2, add=TRUE,
col=rgb(0,0,1,1/8), pch=20, cex=2)
```

friday Friday the 13th

Description

This data set addresses issues of how superstitions regarding Friday the 13th affect human behavior, and whether Friday the 13th is an unlucky day. Scanlon, et al. collected data on traffic and shopping patterns and accident frequency for Fridays the 6th and 13th between October of 1989 and November of 1992.

There are three types of observations: traffic, shopping, and accident. For traffic, the researchers obtained information from the British Department of Transport regarding the traffic flows between junctions 7 to 8 and junctions 9 to 10 of the M25 motorway. For shopping, they collected the numbers of shoppers in nine different supermarkets in southeast England. For accidents, they collected numbers of emergency admissions to hospitals due to transport accidents.

Usage

data(friday)

Format

A data frame with 61 observations and 6 variables.
type Type of observation, traffic, shopping, or accident.
date Year and month of observation.
sixth Counts on the 6th of the month.
thirteenth Counts on the 13th of the month.
diff Difference between the sixth and the thirteenth.
location Location where data is collected.

Source

Scanlon, T.J., Luben, R.N., Scanlon, F.L., Singleton, N. (1993), "Is Friday the 13th Bad For Your Health?," BMJ, 307, 1584-1586.
http://lib.stat.cmu.edu/DASL/Datafiles/Fridaythe13th.html

Examples

```
data(friday)
par(mfrow = c(1,2))
boxPlot(friday$sixth[friday $type == "traffic"], xlab = "sixth")
boxPlot(friday$thirteenth[friday $type == "traffic"], xlab = "thirteenth")
```


Description

An investigator is interested in understanding the relationship, if any, between the analytical skills of young gifted children and the following variables: father's IQ, mother's IQ, age in month when the child first said 'mummy' or 'daddy', age in month when the child first counted to 10 successfully, average number of hours per week the child's mother or father reads to the child, average number of hours per week the child watched an educational program on TV during the past three months, average number of hours per week the child watched cartoons on TV during the past three months. The analytical skills are evaluated using a standard testing procedure, and the score on this test is used as the response variable.

Data were collected from schools in a large city on a set of thirty-six children who were identified as gifted children soon after they reached the age of four.

Usage
 data(gifted)

Format

A data frame with 36 observations and 8 variables.
score Score in test of analytical skills.
fatheriq Father's IQ.
motheriq Mother's IQ.
speak Age in months when the child first said 'mummy' or 'daddy'.
count Age in months when the child first counted to 10 successfully.
read Average number of hours per week the child's mother or father reads to the child.
edutv Average number of hours per week the child watched an educational program on TV during the past three months.
cartoons Average number of hours per week the child watched cartoons on TV during the past three months.

Source

Graybill, F.A. \& Iyer, H.K., (1994) Regression Analysis: Concepts and Applications, Duxbury, p. 511-6.

Examples

```
data(gifted)
histPlot(gifted$count)
histPlot(gifted$fatheriq)
histPlot(gifted$motheriq)
histPlot(gifted$motheriq - gifted$fatheriq)
plot(gifted$score ~ gifted$motheriq)
lm(gifted$score ~ gifted$motheriq + gifted$fatheriq + gifted$speak +
                                    gifted$count + gifted$read +
                                    gifted$edutv + gifted$cartoons)
```

 govRace10
 Election results for 2010 Governor races in the U.S.

Description

Election results for 2010 Governor races in the U.S.

Usage

data(govRace10)

Format

A data frame with 37 observations on the following 23 variables.
id Unique identifier for the race, which does not overlap with other 2010 races (see houseRace10 and senateRace10)
state State name
abbr State name abbreviation
name1 Name of the winning candidate
perc1 Percentage of vote for winning candidate (if more than one candidate)
party1 Party of winning candidate
votes1 Number of votes for winning candidate
name2 Name of candidate with second most votes
perc2 Percentage of vote for candidate who came in second
party2 Party of candidate with second most votes
votes2 Number of votes for candidate who came in second
name3 Name of candidate with third most votes
perc3 Percentage of vote for candidate who came in third
party3 Party of candidate with third most votes
votes3 Number of votes for candidate who came in third
name 4 Name of candidate with fourth most votes
perc4 Percentage of vote for candidate who came in fourth
party 4 Party of candidate with fourth most votes
votes 4 Number of votes for candidate who came in fourth
name5 Name of candidate with fifth most votes
perc5 Percentage of vote for candidate who came in fifth
party5 Party of candidate with fifth most votes
votes5 Number of votes for candidate who came in fifth

Source

Data was collected from MSNBC.com on November 9th, 2010.

Examples

```
data(govRace10)
```

table(govRace10[, c("party1", "party2")])
gradesTV Simulated data for analyzing the relationship between watching TV and grades

Description

This is a simulated data set to be used to estimate the relationship between number of hours per week students watch TV and the grade they got in a statistics class.

Usage

data(gradesTV)

Format

A data frame with 25 observations on the following 2 variables.
TV Number of hours per week students watch TV.
Grades Grades students got in a statistics class (out of 100).

Details

There are a few potential outliers in this data set. When analyzing the data one should consider how (if at all) these outliers may affect the estimates of correlation coefficient and regression parameters.

Source

Simulated data

Examples

```
data(gradesTV)
str(gradesTV)
plot(gradesTV)
makeTube(gradesTV$TV, gradesTV$Grades, 1.5, type='robust', homosk=FALSE)
lmPlot(gradesTV$TV, gradesTV$Grades, xAxis=4, xlab='time watching TV',
yR=0.2, highlight=c(1,15,20))
```

heartTr Heart Transplant Data

Description

The Stanford University Heart Transplant Study was conducted to determine whether an experimental heart transplant program increased lifespan. Each patient entering the program was designated officially a heart transplant candidate, meaning that he was gravely ill and would most likely benefit from a new heart. Then the actual heart transplant occurs between a few weeks to several months depending on the availability of a donor. Very few candidates during this waiting period show improvement and get deselected as a heart transplant candidate, but for the purposes of this experiment those patients were kept in the data as continuing candidates.

Usage

data(heartTr)

Format

A data frame with 103 observations on the following 8 variables.
id ID number of the patient.
acceptyear Year of acceptance as a heart transplant candidate.
age Age of the patient at the beginning of the study.
survived Survival status with levels alive and dead.
survtime Number of days patients were alive after the date they were determined to be a candidate for a heart transplant until the termination date of the study
prior Whether or not the patient had prior surgery with levels yes and no.
transplant Transplant status with levels control (did not receive a transplant) and treatment (received a transplant).
wait Waiting Time for Transplant

Source

http://www.stat.ucla.edu/~jsanchez/data/stanford.txt

References

Turnbull B, Brown B, and Hu M (1974). "Survivorship of heart transplant data." Journal of the American Statistical Association, vol. 69, pp. 74-80.

Examples

```
data(heartTr)
str(heartTr)
boxPlot(heartTr$survtime, heartTr$transplant,
ylab = 'Survival Time (days)')
mosaicplot(~ transplant + survived, data = heartTr)
```

helium Helium football

Description

At the 1976 Pro Bowl, Ray Guy, a punter for the Oakland Raiders, punted a ball that hung mid-air long enough for officials to question whether the pigskin was filled with helium. The ball was found to be filled with air, but since then many have tossed around the idea that a helium-filled football would outdistance an air-filled one. Students at Ohio State University conducted an experiment to test this myth. They used two identical footballs, one air filled with air and one filled with helium. Each football was kicked 39 times and the two footballs were alternated with each kick.

Usage

data(helium)

Format

A data frame with 39 observations on the following 3 variables.
trial Trial number.
air Distance in years for air-filled football.
helium Distance in years for helium-filled football.

Details

Lafferty, M. B. (1993), "OSU scientists get a kick out of sports controversy, "The Columbus Dispatch (November, 21, 1993), B7.

Source

Data and Story Library, http://lib.stat.cmu.edu/DASL/Datafiles/Heliumfootball.html.

Examples

```
data(helium)
par(mfrow = c(1,2))
boxPlot(helium$air, xlab = "air")
boxPlot(helium$helium, xlab = "helium")
```

histPlot Histogram or hollow histogram

Description

Create histograms and hollow histograms. This function permits easy color and appearance customization.

Usage

histPlot(x, col = fadeColor("black", "22"), border = "black", breaks = "default", probability = FAL

Arguments

$x \quad$ Numerical vector or a frequency table (matrix) where the first column represents the observed values and the second column the frequencies. See also freqTable argument.
col Shading of the histogram bins.
border Color of histogram bin borders.
breaks A vector for the bin boundaries or an approximate number of bins.
probability If FALSE, the frequency is plotted. If TRUE, then a probability density.
hollow If TRUE, a hollow histogram will be created.
add If TRUE, the histogram is added to the plot.
lty Line type. Applies only if hollow=TRUE.
lwd Line width. Applies only if hollow=TRUE.
freqTable Set to TRUE if x is a frequency table.
right Set to FALSE to assign values of x that fall on a bin margin to the left bin. Otherwise the ties default to the right bin.
axes If FALSE, the axes are not plotted.
$\mathrm{xlab} \quad$ Label for the x axis.
ylab Label for the y axis.
xlim Limits for the x axis.
ylim Limits for the y axis.
... Additional arguments to plot. If add is TRUE, these arguments are ignored.

Author(s)

David Diez

See Also

boxPlot, dotPlot, densityPlot

Examples

```
data(run10)
par(mfrow=c(2,2))
histPlot(run10$time)
histPlot(run10$time[run10$gender=='M'], probability=TRUE, xlim=c(30, 180),
ylim=c(0, 0.025), hollow=TRUE)
histPlot(run10$time[run10$gender=='F'], probability=TRUE, add=TRUE,
hollow=TRUE, lty=3, border='red')
legend('topleft', col=c('black', 'red'), lty=2:3, legend=c('M','F'))
histPlot(run10$time, col=fadeColor('yellow', '33'), border='darkblue',
probability=TRUE, breaks=30, lwd=3)
brks <- c(40, 50, 60, 65, 70, 75, 80, seq(82.5, 120, 2.5), 125,
130, 135, 140, 150, 160, 180)
histPlot(run10$time, probability=TRUE, breaks=brks,
col=fadeColor('darkgoldenrod4', '33'))
```

house United States House of Representatives historical make-up

Description

The make-up of the United States House of Representatives every two years since 1789. The last Congress included is the 112th Congress, which completes its term in 2013.

Usage

data(house)

Format

A data frame with 112 observations on the following 12 variables.
congress The number of that year's Congress
yearStart Starting year
yearEnd Ending year
seats Total number of seats
p1 Name of the first political party
np1 Number of seats held by the first political party
p2 Name of the second political party
np2 Number of seats held by the second political party
other Other
vac Vacancy
del Delegate
res Resident commissioner

Source

Office of the Clerk of the U.S. House of Representatives Party Divisions:

```
http://clerk.house.gov/art_history/house_history/partyDiv.html
```

Data for Congresses 1-111 was recorded from the website above on November 1st, 2010. It appears this page was later moved to

```
http://artandhistory.house.gov/house_history/partyDiv.aspx
```

where data for Congress 112 was recorded on April 21, 2011.

Examples

```
data(house)
#=====> Examine two-party relationship since 1855 <=====#
these <- 34:112
COL <- c("#EEDDBB", "#DDEEBB", "#DDDDDD",
            "#BBDDEE", "#EEE5E5", "#EECCCC")
party <- c("#2222FF", "#FF2222")
par(las=1)
plot(house$yearStart[these], 100*house$np1[these]/house$seats[these],
    type="n", xlab="Year", ylab="Percent of House seats", ylim=c(11, 93))
rect(1861.3, -1000, 1865.3, 1000, col=COL[1], border="#FFFFFF")
rect(1914.5, -1000, 1918.9, 1000, col=COL[2], border="#FFFFFF")
rect(1929, -1000, 1939, 1000, col=COL[3], border="#FFFFFF")
rect(1939.7, -1000, 1945.6, 1000, col=COL[4], border="#FFFFFF")
rect(1955.8, -1000, 1965.3, 1000, col=COL[5], border="#E2E2E2")
rect(1965.3, -1000, 1975.4, 1000, col=COL[6], border="#E2E2E2")
lines(house$yearStart[these], 100*house$np1[these]/house$seats[these],
    col=party[1])
lines(house$yearStart[these], 100*house$np2[these]/house$seats[these],
        col=party[2])
legend("topleft", lty=c(1,1), col=party,
        c("Democrats", "Republicans"), bg="#FFFFFF")
legend("topright", fill=COL,
        c("Civil War", "World War I", "Great Depression", "World War II",
            "Vietnam War Start", "Vietnam War Escalated"),
        bg="#FFFFFF", border="#FFFFFF")
```


Description

Election results for the 2010 U.S. House of Represenatives races

Usage

data(houseRace10)

Format

A data frame with 435 observations on the following 24 variables.
id Unique identifier for the race, which does not overlap with other 2010 races (see govRace10 and senateRace10)
state State name
abbr State name abbreviation
num District number for the state
name1 Name of the winning candidate
perc1 Percentage of vote for winning candidate (if more than one candidate)
party1 Party of winning candidate
votes1 Number of votes for winning candidate
name 2 Name of candidate with second most votes
perc2 Percentage of vote for candidate who came in second
party2 Party of candidate with second most votes
votes 2 Number of votes for candidate who came in second
name3 Name of candidate with third most votes
perc3 Percentage of vote for candidate who came in third
party3 Party of candidate with third most votes
votes 3 Number of votes for candidate who came in third
name4 Name of candidate with fourth most votes
perc4 Percentage of vote for candidate who came in fourth
party4 Party of candidate with fourth most votes
votes 4 Number of votes for candidate who came in fourth
name5 Name of candidate with fifth most votes
perc5 Percentage of vote for candidate who came in fifth
party5 Party of candidate with fifth most votes
votes5 Number of votes for candidate who came in fifth

Details

This analysis in the Examples section was inspired by and is similar to that of Nate Silver's districtlevel analysis on the FiveThirtyEight blog in the New York Times:
http://fivethirtyeight.blogs.nytimes.com/2010/11/08/2010-an-aligning-election/

Source

Data was collected from MSNBC.com on November 9th, 2010.

Examples

```
    data(houseRace10)
    hr <- table(houseRace10[,c("abbr", "party1")])
    nr <- apply(hr, 1, sum)
    data(prRace08)
    pr <- prRace08[prRace08$state != "DC",c("state", "pObama")]
    hr <- hr[as.character(pr$state),]
    (fit <- glm(hr ~ pr$pObama, family=binomial))
    x1 <- pr$pObama[match(houseRace10$abbr, pr$state)]
    y1 <- (houseRace10$party1 == "Democrat")+0
    g <- glm(y1 ~ x1, family=binomial)
    x <- pr$pObama[pr$state != "DC"]
    nr <- apply(hr, 1, sum)
    plot(x, hr[,"Democrat"]/nr, pch=19, cex=sqrt(nr), col="#22558844", xlim=c(20, 80), ylim=c(0, 1), xlab="Percent
    X <- seq(0, 100, 0.1)
    lo <- -5.6079 + 0.1009*X
    p <- exp(lo)/(1+exp(lo))
    lines(X, p)
    abline(h=0:1, lty=2, col="#888888")
```

 hsb2 High School and Beyond survey

Description

Two hundred observations were randomly sampled from the High School and Beyond survey, a survey conducted on high school seniors by the National Center of Education Statistics.

Usage

data(hsb2)

Format

A data frame with 200 observations and 11 variables.
id Student ID.
gender Student's gender, with levels female and male.
race Student's race, with levels african american, asian, hispanic, and white.
ses Socio economic status of student's family, with levels low, middle, and high.
schtyp Type of school, with levels public and private.
prog Type of program, with levels general, academic, and vocational.
read Standardized reading score.
write Standardized writing score.
math Standardized math score.
science Standardized science score.
socst Standardized social studies score.

Source

UCLA Academic Technology Services, http://www.ats.ucla.edu/stat/data/hsb2.csv.

Examples

```
data(hsb2)
boxPlot(hsb2$read - hsb2$write, fact = hsb2$gender,
        ylab = "diff. bet. reading and writing scores")
```

infMortRate
Infant Mortality Rates, 2012

Description

This entry gives the number of deaths of infants under one year old in 2012 per 1,000 live births in the same year. This rate is often used as an indicator of the level of health in a country.

Usage

data(infMortRate)

Format

A data frame with 222 observations on the following 2 variables.
country Name of country.
infMortRate Infant mortality rate per 1,000 live births.

Details

The data is given in decreasing order of infant mortality rates. There are a few potential outliers.

Source

CIA World Factbook, https://www.cia.gov/library/publications/the-world-factbook/ rankorder/rawdata_2091.txt.

Examples

```
data(infMortRate)
histPlot(infMortRate$infMortRate)
boxPlot(infMortRate$infMortRate)
```

 ipod Length of songs on an iPod

Description

A simulated data set on lengths of songs on an iPod.

Usage

```
data(ipod)
```


Format

A data frame with 3000 observations on the following variable.
songLength Length of song (in minutes).

Source

Simulated data.

Examples

```
data(ipod)
histPlot(ipod$songLength)
```


lmPlot

Linear regression plot with residual plot

Description

Plot data, the linear model, and a residual plot simultaneously.

Usage

$\operatorname{lmPlot}(x, y, x A x i s=0, y A x i s=4$, resAxis $=3$, resSymm $=$ TRUE,
wBox = TRUE, wLine = TRUE, lCol = "\#00000088", lty = 1,
lwd = 1, xlab = "", ylab = "", marRes = NULL,
col = "\#22558888", pch = 20, cex = 1.5, xR = 0.02,
yR = 0.1, xlim = NULL, ylim = NULL, subset = NULL,
parCustom $=$ FALSE, myHeight $=c(1,0.45)$,
plots = c("both", "mainOnly", "resOnly"), highlight = NULL,
hlCol $=$ NULL, hlCex $=1.5$, hlPch $=20$, na.rm=TRUE, ...)

Arguments

x
y
xAxis
yAxis
resAxis
resSymm
wBox
wLine
lCol
lty
lwd
$x l a b \quad$ A label for the x axis.
ylab A label for the y axis
marRes Margin specified for the residuals.
col Color of points.
pch Plotting character.
cex Plotting character size.
$x R \quad$ Scaling the limits of the x axis. Ignored if x lim specified.
$y R \quad$ Scaling the limits of the y axis. Ignored if ylim specified.
xlim Limits for the x axis.

ylim	Limits for the y axis.
subset	
parCustom	A subset of the data to be used for the linear model. If TRUE, then the plotting margins are not modified automatically. This value should also be TRUE if the plots are being placed within a plot of multiple panels.
myHeight	A numerical vector of length 2 representing the ratio of the primary plot to the residual plot, in height.
plots	Not currently utilized.
highlight	Numerical vector specifying particular points to highlight.
hlCol	Color of highlighted points.
hlCex	Size of highlighted points.
hlPch	Plotting characters of highlighted points.
na.rm	Remove cases with NA values.
\ldots	Additional arguments to plot.

Author(s)

David M Diez david.m.diez@gmail.com

See Also

makeTube

Examples

data(satGPA)
lmPlot (satGPA\$SATSum, satGPA\$FYGPA)
data(gradesTV)
lmPlot(gradesTV\$TV, gradesTV\$Grades, xAxis=4,
xlab='time watching TV', yR=0.2, highlight=c $(1,15,20)$)

loop Output a message while inside a loop

Description

Output a message while inside a for loop to update the user on progress. This function is useful in tracking progress when the number of iterations is large or the procedures in each iteration take a long time.

Usage

loop(i, $\mathrm{n}=$ NULL, every $=1$, extra=NULL)
makeTube

Arguments

i
n
every
extra

The index value used in the loop.
The last entry in the loop.
The number of loops between messages.
Additional information to print.

Author(s)

David M Diez

See Also

myPDF

Examples

```
for(i in 1:160){
loop(i, 160, 20, paste("iter", i))
}
```

makeTube Regression tube

Description

Produce a linear, quadratic, or nonparametric tube for regression data.

Usage

makeTube(x, y, Z=2, R=1, col='\#00000022', border='\#00000000', type=c('lin', 'quad', 'robust'), stDev=c('constant', 'linear', 'other'), length.out=99, bw='default', plotTube=TRUE, addLine=TRUE, ...)

Arguments

$x \quad x$ coordinates.
$y \quad y$ coordinates.
Z Number of standard deviations out from the regression line to extend the tube.
$R \quad$ Control of how far the tube extends to the left and right.
col Fill color of the tube.
border Border color of the tube.
type The type of model fit to the data. Here 'robust' results in a nonparametric estimate.

stDev	Choices are constant variance ('constant'), the standard deviation of the errors changes linearly ('linear'), or the standard deviation of the errors should be estimated using nonparametric methods ('other').
length. out	The number of observations used to build the regression model. This argument may be increased to increase the smoothing of a quadratic or nonparametric curve.
bw	Bandwidth used if type=' robust' or homosk=FALSE.
plotTube	Whether the tube should be plotted.
addLine	Whether the linear model should be plotted.
\ldots	Additional arguments passed to the lines function if addLine=TRUE.

Value

$X \quad X$ coordinates for the regression model.
$Y \quad y$ coordinates for the regression model.
tubeX $\quad x$ coordinates for the boundary of the tube.
tubey y coordinates for the boundary of the tube.

Author(s)

David M Diez

See Also

lmPlot

Examples

```
#===> possum example <===#
data(possum)
x <- possum$totalL
y <- possum$headL
plot(x,y)
makeTube(x,y,1)
makeTube(x,y,2)
makeTube(x,y,3)
#===> Grades and TV example <===#
data(gradesTV)
par(mfrow=c(2,2))
plot(gradesTV)
makeTube(gradesTV$TV, gradesTV$Grades, 1.5)
plot(gradesTV)
makeTube(gradesTV$TV, gradesTV$Grades, 1.5, stDev='o')
plot(gradesTV)
makeTube(gradesTV$TV, gradesTV$Grades, 1.5, type='robust')
plot(gradesTV)
makeTube(gradesTV$TV, gradesTV$Grades, 1.5, type='robust', stDev='o')
```

```
#===> What can go wrong with a basic least squares model <===#
par(mfrow=c(1,3), mar=c(2.5, 2.5, 1, 2.5))
# 1
x <- runif(100)
y <- 25*x-20*x^2+rnorm(length(x), sd=1.5)
plot(x,y)
makeTube(x,y,type='q')
# 2
x <- c(-0.6, -0.46, -0.091, runif(97))
y <- 25*x + rnorm(length(x))
y[2] <- y[2] + 8
y[1] <- y[1] + 1
plot(x,y,ylim=range(y)+c(-10,5))
makeTube(x,y)
# 3
x <- runif(100)
y <- 5*x + rnorm(length(x), sd=x)
plot(x,y)
makeTube(x, y, stDev='l', bw=0.03)
```

```
mammals Sleep in Mammals
```


Description

This data set includes data for 39 species of mammals distributed over 13 orders. The data were used for analyzing the relationship between constitutional and ecological factors and sleeping in mammals. Two qualitatively different sleep variables (dreaming and non dreaming) were recorded. Constitutional variables such as life span, body weight, brain weight and gestation time were evaluated. Ecological variables such as severity of predation, safety of sleeping place and overall danger were inferred from field observations in the literature.

Usage

data(mammals)

Format

A data frame with 62 observations on the following 11 variables.
Species Species of mammals
BodyWt Total body weight of the mammal (in kg)
BrainWt Brain weight of the mammal (in kg)
NonDreaming Number of hours of non dreaming sleep
Dreaming Number of hours of dreaming sleep
TotalSleep Total number of hours of sleep
LifeSpan Life span (in years)

Gestation Gestation time (in days)
Predation An index of how likely the mammal is to be preyed upon. $1=$ least likely to be preyed upon. $5=$ most likely to be preyed upon.

Exposure An index of the how exposed the mammal is during sleep. $1=$ least exposed (e.g., sleeps in a well-protected den). $5=$ most exposed.
Danger An index of how much danger the mammal faces from other animals. This index is based upon Predation and Exposure. $1=$ least danger from other animals. $5=$ most danger from other animals.

Source

http://www.statsci.org/data/general/sleep.txt

References

T. Allison and D. Cicchetti, "Sleep in mammals: ecological and constitutional correlates," Arch. Hydrobiol, vol. 75, p. 442, 1975

Examples

data(mammals)
lmPlot $(\log ($ mammals\$BodyWt), $\log (m a m m a l s \$ B r a i n W t))$

```
marathon New York City Marathon Times
```


Description

Marathon times of male and female winners of the New York City Marathon 1970-1999.

Usage

data(marathon)

Format

A data frame with 60 observations on the following 3 variables.
Year Year
Gender Gender
Time Running time (in hours)

Source

http://www.webcitation.org/5kx7ilFLp

Examples

```
data(marathon)
str(marathon)
histPlot(marathon$Time)
boxPlot(marathon$Time, horiz = TRUE, fact = marathon$Gender)
```

marioKart Wii Mario Kart auctions from Ebay

Description

Auction data from Ebay for the game Mario Kart for the Nintendo Wii. This data was collected in early October, 2009.

Usage

data(marioKart)

Format

A data frame with 143 observations on the following 12 variables. All prices are in US dollars.
ID Auction ID assigned by Ebay.
duration Auction length, in days.
nBids Number of bids.
cond Game condition, either new or used.
startPr Start price of the auction.
shipPr Shipping price.
totalPr Total price, which equals the auction price plus the shipping price.
shipSp Shipping speed or method.
sellerRate The seller's rating on Ebay. This is the number of positive ratings minus the number of negative ratings for the seller.
stockPhoto Whether the auction feature photo was a stock photo or not. If the picture was used in many auctions, then it was called a stock photo.
wheels Number of Wii wheels included in the auction. These are steering wheel attachments to make it seem as though you are actually driving in the game. When used with the controller, turning the wheel actually causes the character on screen to turn.
title The title of the auctions.

Details

There are several interesting features in the data. First off, note that there are two outliers in the data, as shown below. These serve as a nice example of what one should do when encountering an outlier: examine the data point and remove it only if there is a good reason. In these two cases, we can see from the auction titles that they included other items in their auctions besides the game, which justifies removing them from the data set.

This data set includes all auctions for a full week in October, 2009. Auctions were included in the data set if they satisfied a number of conditions. (1) They were included in a search for "wii mario kart" on ebay.com, (2) items were in the Video Games > Games > Nintendo Wii section of Ebay, (3) the listing was an auction and not exclusively a "Buy it Now" listing (sellers sometimes offer an optional higher price for a buyer to end bidding and win the auction immediately, which is an optional Buy it Now auction), (4) the item listed was the actual game, (5) the item was being sold from the US, (6) the item had at least one bidder, (7) there were no other items included in the auction with the exception of racing wheels, either generic or brand-name being acceptable, and (8) the auction did not end with a Buy It Now option.

References

http://www.ebay.com/
http://www.openintro.org/

Examples

```
data(marioKart)
#===> Identify the outliers <===#
boxPlot(marioKart$totalPr, marioKart$cond, horiz=TRUE)
toss <- which(marioKart$totalPr > 80)
lines(rep(marioKart$totalPr[toss[1]], 2), c(2.4, 2))
text(marioKart$totalPr[toss[1]]-55, 2.4, marioKart$title[toss[1]],
pos=3, cex=0.5)
lines(rep(marioKart$totalPr[toss[2]], 2), c(1.6, 2))
text(marioKart$totalPr[toss[2]], 1.6, marioKart$title[toss[2]],
pos=1, cex=0.5)
```

```
    marioKart[toss, ]
    # the other two points marked on the boxplot are legitimate auctions
    #===> Replot without the outliers <===#
    boxPlot(marioKart$totalPr[-toss], marioKart$cond[-toss], horiz=TRUE)
    #===> Fit a Multiple Regression Model <===#
    mk <- marioKart[-toss,]
    summary(lm(totalPr ~ cond + stockPhoto + duration + wheels, mk))
    summary(lm(totalPr ~ cond + stockPhoto + wheels, mk))
    summary(fit <- lm(totalPr ~ cond + wheels, mk))
    #===> Fit Diagnostics <===#
    e <- fit$res
    f <- fit$fit
    par(mfrow=c(2,3), mar=c(4, 4, 2, 1))
    qqnorm(e, ylab="Residuals", main="")
    plot(e, xlab="Order of collection", ylab="Residuals")
    plot(f, e, xlab="Fitted values", ylab="Residuals")
    plot(f, (abs(e)), xlab="Fitted values",
        ylab="Absolute value of residuals")
    boxPlot(e, mk$cond, xlab="Condition", ylab="Residuals")
    plot(mk$wheels, e, xlab="Number of wheels", ylab="Residuals",
        main="Notice curvature")
```


Description

Salary data for Major League Baseball players in the year 2010.

Usage

data(MLB)

Format

A data frame with 828 observations on the following 4 variables.
player Player name
team Team
position Field position
salary Salary (in \$1000s)

Source

Collected from the following page (and its linked pages) on February 23rd, 2011: http://content.usatoday.com/sportsdata/baseball/mlb/salaries/team

Examples

```
data(MLB)
#=====> Basic Histogram <=====#
hist(MLB$salary/1000, main="", breaks=15, xlab="Salary (millions of dollars)", axes=FALSE, ylab="", col="#2255
axis(1, seq(0, 40, 10))
axis(2, c(0, 500))
axis(2, seq(100, 400, 100), rep("", 4), tcl=-0.2)
#=====> Histogram on Log Scale <=====#
hist(log(MLB$salary/1000), main="", breaks=15, xlab="log(Salary)", axes=FALSE, ylab="", col="#22558844")
axis(1) #, seq(0, 40, 10))
axis(2, seq(0, 300, 100))
#=====> Box plot of log(salary) against position <=====#
par(las=1, mar=c(4, 8, 1, 1))
boxPlot(log(MLB$salary/1000), MLB$position, horiz=TRUE, ylab="")
```

mlbBat10
Major League Baseball Player Hitting Statistics for 2010

Description

Major League Baseball Player Hitting Statistics for 2010.

Usage

data(mlbBat10)

Format

A data frame with 1199 observations on the following 19 variables.
name Player name
team Team abbreviation
position Player position
G Number of games
$A B$ Number of at bats
R Number of runs
H Number of hits
2B Number of doubles
3B Number of triples
HR Number of home runs
RBI Number of runs batted in
TB Total bases, computed as $3 * \mathrm{HR}+2 * 3 \mathrm{~B}+1 * 2 \mathrm{~B}+\mathrm{H}$

BB Number of walks
SO Number of strikeouts
SB Number of stolen bases
CS Number of times caught stealing
OBP On base percentage
SLG Slugging percentage (TB / AB)
AVG Batting average

Source

Data was collected from MLB.com on April 22nd, 2011.

Examples

```
data(mlbBat10)
d <- mlbBat10[mlbBat10$AB > 200,]
pos <- list(c("OF"), c("1B", "2B", "3B", "SS"), "DH", "C")
POS <- c("OF", "IF", "DH", "C")
#=====> On-base Percentage Across Positions <=====#
out <- c()
gp <- c()
for(i in 1:length(pos)){
these <- which(d$pos %in% pos[[i]])
out <- c(out, d[these,"OBP"])
gp <- c(gp, rep(POS[i], length(these)))
}
plot(out ~ as.factor(gp))
summary(lm(out ~ as.factor(gp)))
anova(lm(out ~ as.factor(gp)))
#=====> Batting Average Across Positions <=====#
out <- c()
gp <- c()
for(i in 1:length(pos)){
these <- which(d$pos %in% pos[[i]])
out <- c(out, d[these,"AVG"])
gp <- c(gp, rep(POS[i], length(these)))
}
plot(out ~ as.factor(gp))
summary(lm(out ~ as.factor(gp)))
anova(lm(out ~ as.factor(gp)))
#=====> Home Runs Across Positions <=====#
out <- c()
gp <- c()
for(i in 1:length(pos)){
these <- which(d$pos %in% pos[[i]])
out <- c(out, d[these,"HR"])
gp <- c(gp, rep(POS[i], length(these)))
```

```
}
plot(out ~ as.factor(gp))
summary(lm(out ~ as.factor(gp)))
anova(lm(out ~ as.factor(gp)))
#=====> Runs Batted In Across Positions <=====#
out <- c()
gp <- c()
for(i in 1:length(pos)){
these <- which(d$pos %in% pos[[i]])
out <- c(out, d[these,"RBI"])
gp <- c(gp, rep(POS[i], length(these)))
}
plot(out ~ as.factor(gp))
summary(lm(out ~ as.factor(gp)))
anova(lm(out ~ as.factor(gp)))
```

myPDF

Custom PDF function

Description

A similar function to pdf and png, except that different defaults are provided, including for the plotting parameters.

Usage

$\operatorname{myPDF}(f i l e N a m e$, width $=5$, height $=3$, mar $=c(3.9,3.9,1,1)$, mgp $=c(2.8,0.55,0)$, las $=1$, tcl $=-0.3, \ldots$)
myPNG(fileName, width $=600$, height $=400$,
mar $=c(3.9,3.9,1,1)$,
mgp $=c(2.8,0.55,0)$,
las = 1, tcl=-0.3, ...)

Arguments

fileName File name for the image to be output. The name should end in .pdf.
width The width of the image file (inches). Default: 5.
height The height of the image file (inches). Default: 3.
mar Plotting margins. To change, input a numerical vector of length 4.
mgp Margin graphing parameters. To change, input a numerical vector of length 3. The first argument specifies where x and y labels are placed; the second specifies the axis labels are placed; and the third specifies how far to pull the entire axis from the plot.
las Orientation of axis labels. Input 0 for the default.
tcl The tick mark length as a proportion of text height. The default is -0.5 .
... Additional arguments to par.

Author(s)

David M Diez

See Also

edaPlot

Examples

```
data(marioKart)
#=====> Save a plot to a PDF <======#
# myPDF("myPlot.pdf")
data(run10)
histPlot(run10$time)
# dev.off()
#=====> Save a plot to a PNG <======#
# myPNG("myPlot.pdf")
data(run10)
histPlot(run10$time)
# dev.off()
```

```
ncbirths North Carolina births
```


Description

In 2004, the state of North Carolina released to the public a large data set containing information on births recorded in this state. This data set has been of interest to medical researchers who are studying the relation between habits and practices of expectant mothers and the birth of their children. This is a random sample of 1,000 cases from this data set.

Usage

data(ncbirths)

Format

A data frame with 1000 observations on the following 13 variables.
fage Father's age in years.
mage Mother's age in years.
mature Maturity status of mother.
weeks Length of pregnancy in weeks.
premie Whether the birth was classified as premature (premie) or full-term.
visits Number of hospital visits during pregnancy.
gained Weight gained by mother during pregnancy in pounds.
weight Weight of the baby at birth in pounds.
lowbirthweight Whether baby was classified as low birthweight (low) or not (not low).
gender Gender of the baby, female or male.
habit Status of the mother as a nonsmoker or a smoker.
marital Whether mother is married or not married at birth.
whitemom Whether mom is white or not white.

Examples

```
data(ncbirths)
boxPlot(ncbirths$weight, fact = ncbirths$habit)
boxPlot(ncbirths$visits, fact = ncbirths$whitemom)
boxPlot(ncbirths$gained, fact = ncbirths$mature)
```

```
normTail Normal distribution tails
```


Description

Produce a normal (or t) distribution and shaded tail.

Usage

normTail(m = 0, s = 1, L = NULL, U = NULL, $M=$ NULL, $d f=1000$, curveColor=1, border = 1, col = "\#CCCCCC", xlim = NULL, ylim=NULL, xlab = "", ylab = "", digits = 2, axes = 1, detail = 999, xLab = c("number", "symbol"), cex.axis = 1, xAxisIncr=1, ...)

Arguments

m
S
L
U
M Numerical value representing the cutoff for a shaded central region.
df
Numerical value for the distribution mean.
Numerical value for the distribution standard deviation.
Numerical value representing the cutoff for a shaded lower tail.
Numerical value representing the cutoff for a shaded upper tail.

Numerical value describing the degrees of freedom. Default is 1000, which results in a nearly normal distribution. Small values may be useful to emphasize small tails.

curveColor	The color for the distribution curve.
border	
col	The color for the border of the shaded area.
xlim	The color for filling the shaded area.
ylim	Limits for the x axis.
xlab	Limits for the y axis.
ylab	A title for the x axis.
digits	A title for the y axis.
axes	The maximum number of digits past the decimal to use in axes values. (2), only the horizontal axes (1, the default), or no axes (0).
detail	A number describing the number of points to use in drawing the normal curve. Smaller values correspond to a less smooth curve but reduced memory usage in the final file.
xLab	If "number", then the axis is drawn at the mean, and every standard deviation out until the third standard deviation. If "symbol", then Greek letters are used for standard deviations from three standard deviations from the mean.
cex.axis	Numerical value controlling the size of the axis labels.
xAxisIncr	A number describing how often axis labels are placed, scaled by standard devi- ations. This argument is ignored if xLab="symbol".
m	Additional arguments to plot.

Author(s)

DM Diez

See Also

buildAxis

Examples

```
par(mfrow=c(2,3), mar=c(3,3,1,1))
normTail(3,2,5)
normTail(3,2,1, xLab='symbol')
normTail(3,2,M=1:2, xLab='symbol', cex.axis=0.8)
normTail(3, 2,U=5,axes=FALSE)
normTail(L=-1, U=2, M=c(0,1), axes=3, xAxisIncr=2)
normTail(L=-1, U=2, M=c(0,1), xLab='symbol', cex.axis=0.8, xAxisIncr=2)
```

oscars Oscar winners, 1929 to 2012

Description

Best actor and actress Oscar winners from 1929 to 2012.

Usage

data(oscars)

Format

A data frame with 170 observations on the following 10 variables.
gender Gender of winner, female or male.
oscar_no Denotes which Oscar ceremony.
oscar_yr Denotes which Oscar year.
name Name of winning actor or actress.
movie Name of movie actor or actress got the Oscar for.
age Age at which the actor or actress won the Oscar.
birth_pl State where the actor or actress was born, country if foreign.
birth_mo Birth month of actor or actress.
birth_d Birth day of actor or actress.
birth_y Birth year of actor or actress.

Details

Although there have been only 84 Oscar ceremonies until 2012, there are 85 male winners and 85 female winners because ties happened on two occasions (1933 for the best actor and 1969 for the best actress).

Source

Journal of Statistical Education, http://www.amstat.org/publications/jse/datasets/oscar2009. dat. txt, updated through 2012 using information from Wikipedia.org.

Examples

```
data(oscars)
boxPlot(oscars$age, oscars$gender)
barplot(oscars$birth_mo)
barplot(table(oscars$birth_pl))
```

poker Poker winnings during 50 sessions

Description

Poker winnings (and losses) for 50 days by a professional poker player.

Usage
 data(poker)

Format

A data frame with 49 observations on the following variable.
winnings Poker winnings and losses, in US dollars.

Source

Anonymity has been requested by the player.

References

OpenIntro Statistics, hrefhttp://www.openintro.org/stat/textbook.phpopenintro.org

Examples

```
data(poker)
histPlot(poker$winnings)
```


Description

Data representing possums in Australia and New Guinea. This is a copy of the data set by the same name in the DAAG package, however, the data set included here includes fewer variables.

Usage

data(possum)

Format

A data frame with 104 observations on the following 8 variables.
site The site number where the possum was trapped.
pop Population, either Vic (Victoria) or other (New South Wales or Queensland).
sex Gender, either m (male) or f (female).
age Age.
headL Head length, in mm.
skullw Skull width, in mm.
totalL Total length, in cm.
tailL Tail length, in cm .

Source

Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly, C. F. 1995. Morphological variation among columns of the mountain brushtail possum, Trichosurus caninus Ogilby (Phalangeridae: Marsupiala). Australian Journal of Zoology 43: 449-458.

References

http://www.openintro.org/

Examples

```
data(possum)
par(mfrow=1:2)
plot(possum$headL, possum$skullW)
densityPlot(possum$totalL, possum$sex, key=c('f','m'),
xlab='total length (cm)')
legend('topright', col=c('black', 'red'), lty=1:2, legend=c('f', 'm'))
```

president United States Presidental History

Description

Summary of the changes in the president and vice president for the United States of America.

Usage

data(president)

Format

A data frame with 67 observations on the following 5 variables.
potus President of the United States
party Political party of the president
start Start year
end End year
vpotus Vice President of the United States

Source

Presidents of the United States (table) - infoplease.com (visited: Nov 2nd, 2010)
http://www.infoplease.com/ce6/history/A0840075.html

Examples

data(president)
prRace08 Election results for the 2008 U.S. Presidential race

Description

Election results for the 2008 U.S. Presidential race

Usage

data(prRace08)

Format

A data frame with 51 observations on the following 7 variables.
state State name abbreviation
stateFull Full state name
nObama Number of votes for Barack Obama
pObama Proportion of votes for Barack Obama
nMcCain Number of votes for John McCain
pMcCain Proportion of votes for John McCain
elVotes Number of electoral votes for a state

Details

In Nebraska, 4 electoral votes went to McCain and 1 to Obama. Otherwise the electoral votes were a winner-take-all.

Source

Presidential Election of 2008, Electoral and Popular Vote Summary, collected on April 21, 2011 from
http://www.infoplease.com/us/government/presidential-election-vote-summary.html

Examples

```
#===> Obtain 2010 US House Election Data <===#
data(houseRace10)
hr <- table(houseRace10[,c("abbr", "party1")])
nr <- apply(hr, 1, sum)
#===> Obtain 2008 President Election Data <===#
data(prRace08)
pr <- prRace08[prRace08$state != "DC",c("state", "pObama")]
hr <- hr[as.character(pr$state),]
(fit <- glm(hr ~ pr$pObama, family=binomial))
#===> Visualizing Binomial outcomes <===#
x <- pr$pObama[pr$state != "DC"]
nr <- apply(hr, 1, sum)
plot(x, hr[,"Democrat"]/nr, pch=19, cex=sqrt(nr), col="#22558844",
        xlim=c(20, 80), ylim=c(0, 1), xlab="Percent vote for Obama in 2008",
        ylab="Probability of Democrat winning House seat")
#===> Logistic Regression <===#
x1 <- pr$pObama[match(houseRace10$abbr, pr$state)]
y1 <- (houseRace10$party1 == "Democrat")+0
g <- glm(y1 ~ x1, family=binomial)
X <- seq(0, 100, 0.1)
lo <- -5.6079 + 0.1009*X
p <- exp(lo)/(1+exp(lo))
lines(X, p)
abline(h=0:1, lty=2, col="#888888")
```

run10 Cherry Blossom 10 mile run data, 2009

Description

14 variables for all 14,974 10 mile participants in the 2009 Cherry Blossom Run (run10_09) and 9 variables for all 16,924 participants in 2012.

Usage

data(run10)
data(run10_09)

Format

The run10_09 data frame summarizes 14,974 observations on the following 14 variables. The run10 (2012 data) summarizes 16,924 observations on 9 variables, which are featured with an asterisk.
place * Finishing position. Separate positions are provided for each gender.
time * The total run time. For run10, this is equivalent to netTime.
netTime The run time from the start line to the finish line.
pace * The listed pace for each runner.
age * Age.
gender * Gender.
first First name.
last Last name.
city Hometown city.
location * Hometown city. (run10 data only.)
state * Hometown state. (For run10, this may also list a country.)
country Hometown country.
div Running division (age group).
divPlace * Division place, also broken up by gender.
divTot * Total number of people in the division (again, also split by gender).

Source

~~ cherryblossom.org ~~

References

~~ OpenIntro Statistics (openintro.org) ~~

Examples

```
data(run10)
#===> men's times <===#
histPlot(run10$time[run10$gender == 'M'])
#===> times by gender <===#
densityPlot(run10$time, run10$gender, key=c('M','F'))
legend('topright', lty=2:1, col=c('red','black'),
    legend=c('M', 'F'))
#===> Examine Sample <===#
data(run10Samp)
```

```
    satGPA SAT and GPA data
```


Description

SAT and GPA data for 1000 students at an unnamed college.

Usage

data(satGPA)

Format

A data frame with 1000 observations on the following 6 variables.
sex Gender of the student.
SATV Verbal SAT percentile.
SATM Math SAT percentile.
SATSum Total of verbal and math SAT percentiles.
HSGPA High school grade point average.
FYGPA First year (college) grade point average.

Source

Educational Testing Service originally collected the data.

References

Data retrieved from
https://www.dartmouth.edu/~chance/course/Syllabi/Princeton96/Class12.html
Data utilized in Chapter 7 of the Open Intro Statistics book: http://www.openintro.org/

Examples

```
data(satGPA)
par(mfrow=2:1)
plot(satGPA$SATSum/2, satGPA$FYGPA)
g <- lm(satGPA$FYGPA ~ I(satGPA$SATSum/2))
summary(g)
abline(g)
plot(satGPA$SATM, satGPA$FYGPA)
g <- lm(satGPA$FYGPA ~ satGPA$SATM)
summary (g)
abline(g)
```


Description

Election results for the 2010 U.S. Senate races

Usage

data(senateRace10)

Format

A data frame with 38 observations on the following 23 variables.
id Unique identifier for the race, which does not overlap with other 2010 races (see govRace10 and houseRace10)
state State name
abbr State name abbreviation
name1 Name of the winning candidate
perc1 Percentage of vote for winning candidate (if more than one candidate)
party1 Party of winning candidate
votes1 Number of votes for winning candidate
name 2 Name of candidate with second most votes
perc2 Percentage of vote for candidate who came in second
party2 Party of candidate with second most votes
votes 2 Number of votes for candidate who came in second
name3 Name of candidate with third most votes
perc3 Percentage of vote for candidate who came in third
party3 Party of candidate with third most votes
votes 3 Number of votes for candidate who came in third
name4 Name of candidate with fourth most votes
perc4 Percentage of vote for candidate who came in fourth
party 4 Party of candidate with fourth most votes
votes 4 Number of votes for candidate who came in fourth
name5 Name of candidate with fifth most votes
perc5 Percentage of vote for candidate who came in fifth
party5 Party of candidate with fifth most votes
votes5 Number of votes for candidate who came in fifth

Source

Data was collected from MSNBC.com on November 9th, 2010.

Examples

```
data(senateRace10)
table(senateRace10$party1)
histPlot(senateRace10$perc1, xlab="Winning candidate vote percentage")
```

smoking UK Smoking Data

Description

Survey data on smoking habits from the UK. The data set can be used for analyzing the demographic characteristics of smokers and types of tobacco consumed.

Usage

data(smoking)

Format

A data frame with 1691 observations on the following 12 variables.
gender Gender with levels Female and Male.
age Age.
maritalStatus Marital status with levels Divorced, Married, Separated, Single and Widowed.
highestQualification Highest education level with levels A Levels, Degree, GCSE/CSE, GCSE/O Level, Higher/Sub Degree, No Qualification, ONC/BTEC and Other/Sub Degree
nationality Nationality with levels British, English, Irish, Scottish, Welsh, Other, Refused and Unknown.
ethnicity Ethnicity with levels Asian, Black, Chinese, Mixed, White and Refused Unknown.
grossIncome Gross income with levels Under $2,600,2,600$ to $5,200,5,200$ to $10,400,10,400$ to 15,600 , 15,600 to $20,800,20,800$ to $28,600,28,600$ to 36,400 , Above 36,400 , Refused and Unknown.
region Region with levels London, Midlands \& East Anglia, Scotland, South East, South West, The North and Wales
smoke Smoking status with levels No and Yes
amtWeekends Number of cigarettes smoked per day on weekends.
amtWeekdays Number of cigarettes smoked per day on weekdays.
type Type of cigarettes smoked with levels Packets, Hand-Rolled, Both/Mainly Packets and Both/Mainly Hand-Rolled

Source

http://www.stats4schools.gov.uk/large_datasets/smoking/default.asp

Examples

```
data(smoking)
str(smoking)
histPlot(smoking$amtWeekends)
histPlot(smoking$amtWeekdays)
table(smoking$smoke, smoking$gender)
mosaicplot(~ smoke + maritalStatus, data = smoking)
barplot(sort(table(smoking$maritalStatus), decreasing = TRUE))
```

```
textbooks Textbook data for UCLA Bookstore and Amazon
```


Description

A random sample was taken of nearly 10% of UCLA courses. The most expensive textbook for each course was identified, and its new price at the UCLA Bookstore and on Amazon.com were recorded.

Usage

data(textbooks)

Format

A data frame with 73 observations on the following 7 variables.
deptAbbr Course department (abbreviated).
course Course number.
ibsn Book ISBN.
uclaNew New price at the UCLA Bookstore.
amazNew New price on Amazon.com.
more Whether additional books were required for the course (Y means "yes, additional books were required").
diff The UCLA Bookstore price minus the Amazon.com price for each book.

Details

The sample represents only courses where textbooks were listed online through UCLA Bookstore's website. The most expensive textbook was selected based on the UCLA Bookstore price, which may insert bias into the data; for this reason, it may be beneficial to analyze only the data where more is " N ".

Source

This data was collected by David M Diez on April 24th.

References

See Section 5.1 of the Open Intro Statistics textbook: http://www.openintro.org/

Examples

```
data(textbooks)
#===> an improper analysis <===#
boxPlot(textbooks$uclaNew, xlim=c(0.5,2.5))
boxPlot(textbooks$amazNew, add=2)
axis(1, at=1:2, labels=c('UCLA Bookstore', 'Amazon'))
t.test(textbooks$uclaNew, textbooks$amazNew)
#===> a reasonable analysis <===#
# the differences are moderately skewed
# the sample size is sufficiently large to justify t test
histPlot(textbooks$diff)
t.test(textbooks$diff)
```


Description

This entry gives simulated spending data for Americans during Thanksgiving in 2009 based on findings of a Gallup poll.

Usage

data(tgSpending)

Format

A data frame with 436 observations on the following 1 variable.
spending Amount of spending, in US dollars.

Examples

```
data(tgSpending)
```

histPlot(tgSpending\$spending)

```
tips Tip data
```


Description

A simulated data set of tips over a few weeks on a couple days per week. Each tip is associated with a single group, which may include several bills and tables (i.e. groups paid in one lump sum in simulations).

Usage

data(tips)

Format

A data frame with 95 observations on the following 5 variables.
week Week number.
day Day, either Friday or Tuesday.
nPeop Number of people associated with the group.
bill Total bill for the group.
tip Total tip from the group.

Details

This data set was built using simulations of tables, then bills, then tips based on the bills. Large groups were assumed to only pay the gratuity, which is evident in the data. Tips were set to be plausible round values; they were often (but not always) rounded to dollars, quarters, etc.

Source

Simulated data set.

References

http://www.openintro.org/

Examples

```
data(tips)
par(mfrow=c(2,2))
boxPlot(tips$tip, tips$day)
densityPlot(tips$tip, tips$week, key=1:3)
legend('topright', lty=1:3, col=c('black', 'red', 'blue'), legend=1:3)
dotPlot(tips$tip)
densityPlot(tips$tip, tips$day)
legend('topright', col=c('black','red'), lty=1:2,
legend=c('Tuesday', 'Friday'))
```


Description

Construct beautiful tree diagrams

Usage

```
treeDiag(main, p1, p2, out1 = c("Yes", "No"), out2 = c("Yes", "No"),
    textwd = 0.15, solwd = 0.2, SBS = c(TRUE, TRUE), showSol = TRUE,
    solSub = NULL, digits = 4, textadj = 0.015, cex.main = 1.3,
    col.main = "#999999", showWork = FALSE)
```


Arguments

main
p1 Vector of probabilities for the primary branches
p2 List for the secondary branches, where each list item should be a numerical vector of probabilities corresponding to the primary branches of p 1
out1 Character vector of the outcomes corresponding to the primary branches
out2 Character vector of the outcomes corresponding to the secondary branches
textwd The width provided for text with a default of 0.15
solwd The with provided for the solution with a default of 0.2
SBS A boolean vector indicating whether to place text and probability side-by-side for the primary and secondary branches
showSol Boolean indicating whether to show the solution in the tree diagram
solSub An optional list of vectors corresponding to p 2 to list alternative text or solutions
digits The number of digits to show in the solution
textadj Vertical adjustment of text
cex.main Size of main in the plot
col.main Color of main in the plot
showWork Whether work should be shown for the solutions

Value

No value is given. A sample plot is given below:
treeDiag

Flight on time? Luggage on time?

Author(s)

David M Diez, Christopher D Barr

References

OpenIntro Statistics, Chapter 2.

See Also

histPlot

Examples

```
# Examples
# generic with random probabilities
treeDiag(c('Flight on time?','Luggage on time?'),
    c(.8,.2), list(c(.97,.03), c(.15,.85)))
treeDiag(c('Breakfast?','Go to class'), c(.4,.6),
    list(c(.4,.36,.34),c(.6,.3,.1)), c('Yes','No'),
    c('Statistics','English','Sociology'), showWork=TRUE)
treeDiag(c('Breakfast?','Go to class'), c(.4,.11,.49),
    list(c(.4,.36,.24),c(.6,.3,.1),c(.1,.4,.5)),
    c('one','two','three'), c('Statistics','English','Sociology'))
treeDiag(c('Dow Jones rise?', 'NASDAQ rise?'),
    c(0.53, 0.47), list(c(0.75, 0.25), c(0.72, 0.28)),
    solSub=list(c("(a)", "(b)"), c("(c)", "(d)")), solwd=0.08)
```


unempl

Description

A compilation of two data sets that provides an estimate of unemployment from 1890 to 2010.

Usage

data(unempl)

Format

A data frame with 121 observations on the following 3 variables.
year Year
unemp Unemployment rate, in percent
usData 1 if from the Bureau of Labor Statistics, 0 otherwise

Source

The data are from Wikipedia at the following URL accessed on November 1st, 2010:
http://en.wikipedia.org/wiki/File:US_Unemployment_1890-2009.gif
Below is a direct quotation from Wikipedia describing the sources of the data:
Own work by Peace01234 Complete raw data are on Peace01234. 1930-2009 data are from Bureau of Labor Statistics, Employment status of the civilian noninstitutional population, 1940 to date ftp://ftp.bls.gov/pub/special.requests/lf/aat1.txt, retrieved March 6, 2009 and [1] retrieved February 12, 2010. Data prior to 1948 are for persons age 14 and over. Data beginning in 1948 are for persons age 16 and over. See also "Historical Comparability" under the Household Data section of the Explanatory Notes at http://www.bls.gov/cps/eetech_methods.pdf. 1890-1930 data are from Christina Romer (1986). "Spurious Volatility in Historical Unemployment Data", The Journal of Political Economy, 94(1): 1-37. 1930-1940 data are from Robert M. Coen (1973). "Labor Force and Unemployment in the 1920's and 1930's: A Re-Examination Based on Postwar Experience", The Review of Economics and Statistics, 55(1): 46-55. Unemployment data was only surveyed once each decade until 1940 when yearly surveys were begun. The yearly data estimates before 1940 are based on the decade surveys combined with other relevant surveys that were collected during those years. The methods are described in detail by Coen and Romer.

Examples

```
data(unempl)
#=====> Time Series Plot of Data <=====#
COL <- c("#DDEEBB", "#EEDDBB", "#BBDDEE", "#FFD5DD", "#FFC5CC")
plot(unempl$year, unempl$unemp, type="n")
rect(0, -50, 3000, 100, col="#E2E2E2")
rect(1914.5, -1000, 1918.9, 1000, col=COL[1], border="#E2E2E2")
```

unempl

```
rect(1929, -1000, 1939, 1000, col=COL[2], border="#E2E2E2")
rect(1939.7, -1000, 1945.6, 1000, col=COL[3], border="#E2E2E2")
rect(1955.8, -1000, 1965.3, 1000, col=COL[4], border="#E2E2E2")
rect(1965.3, -1000, 1975.4, 1000, col=COL[5], border="#E2E2E2")
abline(h=seq(0,50,5), col="#F8F8F8", lwd=2)
abline(v=seq(1900, 2000, 20), col="#FFFFFF", lwd=1.3)
lines(unempl$year, unempl$unemp)
points(unempl$year, unempl$unemp, pch=20)
legend("topright", fill=COL,
    c("World War I", "Great Depression", "World War II",
        "Vietnam War Start", "Vietnam War Escalated"),
    bg="#FFFFFF", border="#FFFFFF")
```


Index

*Topic 2008
prRace08, 65
*Topic Abbreviation
abbr2state, 5
*Topic Bayes Theorem
treeDiag, 74
*Topic Conditional probability treeDiag, 74
*Topic Data tube makeTube, 49
*Topic Graphics myPDF, 58
*Topic Kernel smoothing makeTube, 49
*Topic LaTeX
contTable, 19
*Topic Least squares makeTube, 49
*Topic PDF myPDF, 58
$*$ Topic Plotting myPDF, 58
*Topic Regression
makeTube, 49
*Topic Save myPDF, 58
*Topic State abbr2state, 5
*Topic Tree diagram treeDiag, 74
*Topic United States prRace08, 65
$*$ Topic axis buildAxis, 12
*Topic categorical data heartTr, 38
$*$ Topic contingency tables heartTr, 38
*Topic control axis
buildAxis, 12
$*$ Topic customize axis
buildAxis, 12
*Topic datasets, ball bearings, inference on means ballBearing, 7
$*$ Topic datasets, college credits, inference on means
credits, 23
*Topic datasets, correlation, regression
gradesTV, 37
*Topic datasets, histogram, distribution
infMortRate, 45
tgSpending, 72
*Topic datasets, iPod, inference on means
ipod, 46
*Topic datasets, regression gifted, 35
*Topic datasets, smoking
smoking, 70
$*$ Topic datasets
ageAtMar, 6
bdims, 8
births, 9
cars, 15
ccHousing, 16
census, 17
classData, 18
COL, 18
county, 20
countyComplete, 21
email, 28
email50, 31
friday, 34
govRace10, 36
heartTr, 38
helium, 39
house, 41
houseRace10, 43
hsb2, 44
mammals, 51
marathon, 52
marioKart, 53
MLB, 55
mlbBat10, 56
ncbirths, 59
oscars, 62
poker, 63
possum, 63
president, 64
prRace08, 65
run10, 66
satGPA, 68
senateRace10, 69
textbooks, 71
tips, 73
unempl, 76
*Topic election
prRace08, 65
*Topic for loop
loop, 48
*Topic heart transplant
heartTr, 38
*Topic index
loop, 48
*Topic linear model
lmPlot, 47
*Topic looping
loop, 48
*Topic message
loop, 48
*Topic myPDF
myPDF, 58
*Topic normal
normTail, 60
*Topic package
openintro-package, 3
*Topic president
prRace08, 65
*Topic randomization tests
heartTr, 38
*Topic residuals
lmPlot, 47
*Topic table
contTable, 19
*Topic tail
normTail, 60
abbr2state, 5
ageAtMar, 6
ballBearing, 7
bdims, 8
births, 9
boxPlot, 3, 10, 13, 24-26, 28, 41
buildAxis, 3, 12, 61
cars, 3, 15, 20
cat, 19
ccHousing, 16
census, 17
classData, 18
COL, 18
contTable, 19
county, $6,20,29,32$
countyComplete, $6,20,21,21$
createEdaOptions (edaPlot), 27
credits, 23
densityPlot, 3, 11, 13, 24, 26, 28, 41
dotPlot, 3, 11, 13, 25, 25, 28, 33, 41
edaPlot, 3, 27, 59
email, 20, 21, 28, 31, 32
email50, 21, 29, 31
email_test (email), 28
fadeColor, 32
fitNormal (edaPlot), 27
friday, 34
gifted, 35
govRace10, 36, 43, 69
gradesTV, 37
guessMethod (edaPlot), 27
heartTr, 38
helium, 39
histPlot, 3, 11, 13, 25, 26, 28, 40, 75
house, 41
houseRace10, 36, 43, 69
hsb2, 44
infMortRate, 45

```
ipod,46
lmPlot, 47, 50
loop,48
makePlotIcon (edaPlot), 27
makeTube, 48,49
mammals, 51
marathon, 52
marioKart, 3, 20, 53
MLB,55
mlbBat10,56
myPDF, 3, 49, 58
myPNG, 3
myPNG (myPDF), 58
ncbirths,59
normTail, 3,60
openintro (openintro-package), 3
openintro-package, 3
oscars,62
plotNothing (edaPlot), 27
poker, }6
possum, 3, 20, 63
president,64
prRace08,65
run10, 3, 66
run10_09 (run10), 66
run10Samp (run10), 66
satGPA, 3,68
senateRace10, 36, 43, 69
smoking,70
state2abbr (abbr2state),5
textbooks, 3,71
tgSpending, }7
tips,73
treeDiag,74
unempl, 76
```

